forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer_cls.py
executable file
·84 lines (67 loc) · 2.6 KB
/
infer_cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, "..")))
os.environ["FLAGS_allocator_strategy"] = "auto_growth"
import paddle
from ppocr.data import create_operators, transform
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import load_model
from ppocr.utils.utility import get_image_file_list
import tools.program as program
def main():
global_config = config["Global"]
# build post process
post_process_class = build_post_process(config["PostProcess"], global_config)
# build model
model = build_model(config["Architecture"])
load_model(config, model)
# create data ops
transforms = []
for op in config["Eval"]["dataset"]["transforms"]:
op_name = list(op)[0]
if "Label" in op_name:
continue
elif op_name == "KeepKeys":
op[op_name]["keep_keys"] = ["image"]
elif op_name == "SSLRotateResize":
op[op_name]["mode"] = "test"
transforms.append(op)
global_config["infer_mode"] = True
ops = create_operators(transforms, global_config)
model.eval()
for file in get_image_file_list(config["Global"]["infer_img"]):
logger.info("infer_img: {}".format(file))
with open(file, "rb") as f:
img = f.read()
data = {"image": img}
batch = transform(data, ops)
images = np.expand_dims(batch[0], axis=0)
images = paddle.to_tensor(images)
preds = model(images)
post_result = post_process_class(preds)
for rec_result in post_result:
logger.info("\t result: {}".format(rec_result))
logger.info("success!")
if __name__ == "__main__":
config, device, logger, vdl_writer = program.preprocess()
main()