-
Notifications
You must be signed in to change notification settings - Fork 1
/
experiment.py
814 lines (721 loc) · 33.4 KB
/
experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
import json
import os
import sys
from pathlib import Path
from typing import Literal, Optional
import pandas as pd
from tqdm import tqdm
from t_res.geoparser import linking, ranking, recogniser
from t_res.utils import process_data, rel_utils
class Experiment:
"""
A class to represent an an entity linking experiment using NER,
candidate ranking, and linking methods.
Arguments:
dataset ("lwm", "hipe"): The dataset to use for the
experiment, must be set to either ``"lwm"`` or ``"hipe"``.
data_path (str): The path to the dataset directory (with processed
data).
results_path (str): The path to the directory where the results will
be stored. If it does not exist, it will be created.
dataset_df (pandas.DataFrame): The dataframe representing the
resulting, preprocessed, dataset.
myner (recogniser.Recogniser): An instance of the NER model to use.
myranker (ranking.Ranker): An instance of the candidate ranking model
to use.
mylinker (linking.Linker): An instance of the linking model to use.
overwrite_processing (bool, optional): Whether to overwrite the
processed data if it already exists (default is ``True``).
processed_data (dict, optional): A dictionary to store the processed
data (default is an empty dictionary).
test split (str, optional): The data split to use for testing (train/
dev/test, default is an empty string).
rel_experiments (bool, optional): Whether to run end-to-end REL
experiments (default is ``False``).
end_to_end_eval (bool, optional): Whether to run the experiment for
end-to-end evaluation or entity-linking-only evaluation (default
is ``False``, i.e. run EL-only).
"""
def __init__(
self,
dataset: Literal["lwm", "hipe"],
data_path: str,
results_path: str,
dataset_df: pd.DataFrame,
myner: recogniser.Recogniser,
myranker: ranking.Ranker,
mylinker: linking.Linker,
overwrite_processing: Optional[bool] = True,
processed_data: Optional[dict] = dict(),
test_split: Optional[str] = "",
rel_experiments: Optional[bool] = False,
end_to_end_eval: Optional[bool] = False,
):
"""
Initialises an Experiment object.
"""
self.dataset = dataset
self.data_path = data_path
self.results_path = results_path
self.myner = myner
self.myranker = myranker
self.mylinker = mylinker
self.overwrite_processing = overwrite_processing
self.dataset_df = dataset_df
self.processed_data = processed_data
self.test_split = test_split
self.rel_experiments = rel_experiments
self.end_to_end_eval = end_to_end_eval
# Load the dataset as a dataframe:
dataset_path = os.path.join(
self.data_path, self.dataset, "linking_df_split.tsv"
)
if Path(dataset_path).exists():
self.dataset_df = pd.read_csv(
dataset_path,
sep="\t",
)
else:
sys.exit(
"\nError: The dataset has not been created, you should first run the prepare_data.py script.\n"
)
if self.end_to_end_eval == True:
self.data_path = self.data_path + "end_to_end/"
self.results_path = self.results_path + "end_to_end/"
Path(self.data_path + self.dataset).mkdir(parents=True, exist_ok=True)
Path(self.results_path + self.dataset).mkdir(parents=True, exist_ok=True)
def __str__(self) -> str:
"""
Returns a string representation of the Experiment object.
Returns:
str
A string representation of the Experiment object.
"""
s = "\n>>> Experiment\n"
s += f" * Dataset: {self.dataset.upper()}\n"
s += f" * Overwrite processing: {self.overwrite_processing}\n"
s += f" * Experiments on: {self.test_split}\n"
s += f" * Run end-to-end REL experiments: {self.rel_experiments}\n"
s += f" * Run for end-to-end evaluation: {self.end_to_end_eval}"
return s
def load_data(self) -> dict:
"""
Load the data already processed in a previous run of the code, using
the same parameters.
Returns:
dict: A dictionary where the processed data is stored.
"""
output_path = os.path.join(self.data_path, self.dataset, self.myner.model)
# Add the candidate experiment info to the path:
cand_approach = self.myranker.method
if self.myranker.method == "deezymatch":
cand_approach += "+" + str(self.myranker.deezy_parameters["num_candidates"])
cand_approach += "+" + str(
self.myranker.deezy_parameters["selection_threshold"]
)
output_processed_data = dict()
try:
with open(output_path + "_ner_predictions.json") as fr:
output_processed_data["preds"] = json.load(fr)
with open(output_path + "_gold_standard.json") as fr:
output_processed_data["trues"] = json.load(fr)
with open(output_path + "_ner_skyline.json") as fr:
output_processed_data["skys"] = json.load(fr)
with open(output_path + "_gold_positions.json") as fr:
output_processed_data["gold_tok"] = json.load(fr)
with open(output_path + "_dict_sentences.json") as fr:
output_processed_data["dSentences"] = json.load(fr)
with open(output_path + "_dict_metadata.json") as fr:
output_processed_data["dMetadata"] = json.load(fr)
with open(output_path + "_pred_mentions.json") as fr:
output_processed_data["dMentionsPred"] = json.load(fr)
with open(output_path + "_gold_mentions.json") as fr:
output_processed_data["dMentionsGold"] = json.load(fr)
with open(output_path + "_candidates_" + cand_approach + ".json") as fr:
output_processed_data["dCandidates"] = json.load(fr)
return output_processed_data
except FileNotFoundError:
print("File not found, process data.")
return dict()
def prepare_data(self) -> dict:
"""
Function that prepares the data for the experiments.
Returns:
dict
The processed data dictionary, containing predicted mentions,
gold standard, REL end-to-end processing, candidates, which
can be used later for linking.
"""
# ----------------------------------
# Coherence checks:
# Some scenarios do not make sense. Warn and exit:
if self.myranker.method not in [
"perfectmatch",
"partialmatch",
"levenshtein",
"deezymatch",
]:
print(
"\n!!! Coherence check failed. "
"This is because the candidate ranking method does not exist.\n"
)
sys.exit(0)
# ----------------------------------
# If data is processed and overwrite is set to False, then do nothing,
# otherwise process the data.
if self.processed_data and self.overwrite_processing == False:
print("\nData already postprocessed and loaded!\n")
return self.processed_data
# ----------------------------------
# If data has not been processed, or overwrite is set to True, then:
# Create the results directory if it does not exist:
Path(self.results_path).mkdir(parents=True, exist_ok=True)
# Prepare data per sentence:
dAnnotated, dSentences, dMetadata = process_data.prepare_sents(self.dataset_df)
# -------------------------------------------
# Parse with NER in the LwM way
print("\nPerform NER with our model:")
output_lwm_ner = process_data.ner_and_process(
dSentences, dAnnotated, self.myner
)
dPreds = output_lwm_ner[0]
dTrues = output_lwm_ner[1]
dSkys = output_lwm_ner[2]
gold_tokenization = output_lwm_ner[3]
# Use the gold standard named entities unless we specify performing the
# evaluation end-to-end:
dMentionsPred = output_lwm_ner[5]
if self.end_to_end_eval == True:
# In this case, use the predicted named entities:
dMentionsPred = output_lwm_ner[4]
dMentionsGold = output_lwm_ner[5]
# -------------------------------------------
# Perform candidate ranking:
print("\n* Perform candidate ranking:")
dCandidates = dict()
# Obtain candidates per sentence:
for sentence_id in tqdm(dMentionsPred):
pred_mentions_sent = dMentionsPred[sentence_id]
(
wk_cands,
self.myranker.already_collected_cands,
) = self.myranker.find_candidates(pred_mentions_sent)
dCandidates[sentence_id] = wk_cands
# -------------------------------------------
# Store temporary postprocessed data
self.processed_data = self.store_processed_data(
dPreds, # preds, _ner_predictions.json
dTrues, # trues, _gold_standard.json
dSkys, # skys, _ner_skyline.json
gold_tokenization, # gold_tok, _gold_positions.json
dSentences, # dSentences, _dict_sentences.json
dMetadata, # dMetadata, _dict_metadata.json
dMentionsPred, # dMentionsPred, _pred_mentions.json
dMentionsGold, # dMentionsGold, _gold_mentions.json
dCandidates, # dCandidates, _candidates_xxx.json
)
# -------------------------------------------
# Store results in the CLEF-HIPE scorer-required format
self.store_results(task="ner", how_split="originalsplit")
return self.processed_data
def store_processed_data(
self,
preds: dict,
trues: dict,
skys: dict,
gold_tok: dict,
dSentences: dict,
dMetadata: dict,
dMentionsPred: dict,
dMentionsGold: dict,
dCandidates: dict,
) -> dict:
"""
Stores all the postprocessed data as JSON files and returns a dictionary
containing all processed data.
Arguments:
experiment (experiment.Experiment): An experiment object.
preds (dict): A dictionary of tokens with predictions per sentence.
trues (dict): A dictionary of tokens with gold standard annotations per
sentence.
skys (dict): A dictionary of tokens representing the skyline per
sentence.
gold_tok (dict): A dictionary of tokens with gold standard annotations
as dictionaries per sentence.
dSentences (dict): A dictionary mapping a sentence ID to the
corresponding text.
dMetadata (dict): A dictionary mapping a sentence ID to associated
metadata.
dMentionsPred (dict): A dictionary of predicted mentions per sentence.
dMentionsGold (dict): A dictionary of gold standard mentions per
sentence.
dCandidates (dict): A dictionary of candidates per mention in a
sentence.
Returns:
dict:
A dictionary containing all processed data (predictions, gold
standard, skyline, candidates) in one place.
Note:
This function also creates one JSON file per dictionary, stored in
``outputs/data``.
"""
data_path = self.data_path
dataset = self.dataset
model_name = self.myner.model
output_path = data_path + dataset + "/" + model_name
cand_approach = self.myranker.method
if self.myranker.method == "deezymatch":
cand_approach += "+" + str(self.myranker.deezy_parameters["num_candidates"])
cand_approach += "+" + str(
self.myranker.deezy_parameters["selection_threshold"]
)
# Store NER predictions using a specific NER model:
with open(output_path + "_ner_predictions.json", "w") as fw:
json.dump(preds, fw)
# Store gold standard:
with open(output_path + "_gold_standard.json", "w") as fw:
json.dump(trues, fw)
# Store NER skyline:
with open(output_path + "_ner_skyline.json", "w") as fw:
json.dump(skys, fw)
# Store gold tokenisation positions:
with open(output_path + "_gold_positions.json", "w") as fw:
json.dump(gold_tok, fw)
# Store the dictionary of sentences:
with open(output_path + "_dict_sentences.json", "w") as fw:
json.dump(dSentences, fw)
# Store the dictionary of metadata per sentence:
with open(output_path + "_dict_metadata.json", "w") as fw:
json.dump(dMetadata, fw)
# Store the dictionary of predicted results:
with open(output_path + "_pred_mentions.json", "w") as fw:
json.dump(dMentionsPred, fw)
# Store the dictionary of gold standard:
with open(output_path + "_gold_mentions.json", "w") as fw:
json.dump(dMentionsGold, fw)
# Store the dictionary of gold standard:
with open(output_path + "_candidates_" + cand_approach + ".json", "w") as fw:
json.dump(dCandidates, fw)
dict_processed_data = dict()
dict_processed_data["preds"] = preds
dict_processed_data["trues"] = trues
dict_processed_data["skys"] = skys
dict_processed_data["gold_tok"] = gold_tok
dict_processed_data["dSentences"] = dSentences
dict_processed_data["dMetadata"] = dMetadata
dict_processed_data["dMentionsPred"] = dMentionsPred
dict_processed_data["dMentionsGold"] = dMentionsGold
dict_processed_data["dCandidates"] = dCandidates
return dict_processed_data
def create_mentions_df(self) -> pd.DataFrame:
"""
Create a dataframe for the linking experiment, with one mention per row.
Returns:
pandas.DataFrame:
A dataframe with one mention per row, and containing all relevant
information for subsequent steps (i.e. for linking).
Note:
This function also creates a TSV file in the
``outputs/data/[dataset]/`` folder.
"""
dMentions = self.processed_data["dMentionsPred"]
if self.end_to_end_eval == False:
dMentions = self.processed_data["dMentionsGold"]
dGoldSt = self.processed_data["dMentionsGold"]
dSentences = self.processed_data["dSentences"]
dMetadata = self.processed_data["dMetadata"]
dCandidates = self.processed_data["dCandidates"]
cand_approach = self.myranker.method
if self.myranker.method == "deezymatch":
cand_approach += "+" + str(self.myranker.deezy_parameters["num_candidates"])
cand_approach += "+" + str(
self.myranker.deezy_parameters["selection_threshold"]
)
rows = []
for sentence_id in dMentions:
for mention in dMentions[sentence_id]:
if mention:
article_id = sentence_id.split("_")[0]
sentence_pos = sentence_id.split("_")[1]
sentence = dSentences[sentence_id]
token_start = mention["start_offset"]
token_end = mention["end_offset"]
char_start = mention["start_char"]
char_end = mention["end_char"]
ner_score = round(mention["ner_score"], 3)
pred_mention = mention["mention"]
entity_type = mention["ner_label"]
place = dMetadata[sentence_id]["place"]
year = dMetadata[sentence_id]["year"]
publication = dMetadata[sentence_id]["publication_code"]
place_wqid = dMetadata[sentence_id]["place_wqid"]
# Match predicted mention with gold standard mention (will just be used for training):
max_tok_overlap = 0
gold_standard_link = "NIL"
gold_standard_ner = "O"
gold_mention = ""
for gs in dGoldSt[sentence_id]:
pred_token_range = range(token_start, token_end + 1)
gs_token_range = range(gs["start_offset"], gs["end_offset"] + 1)
overlap = len(list(set(pred_token_range) & set(gs_token_range)))
if overlap > max_tok_overlap:
max_tok_overlap = overlap
gold_mention = gs["mention"]
gold_standard_link = gs["entity_link"]
gold_standard_ner = gs["ner_label"]
candidates = dCandidates[sentence_id].get(
mention["mention"], dict()
)
rows.append(
[
sentence_id,
article_id,
sentence_pos,
sentence,
token_start,
token_end,
char_start,
char_end,
ner_score,
pred_mention,
entity_type,
place,
year,
publication,
place_wqid,
gold_mention,
gold_standard_link,
gold_standard_ner,
candidates,
]
)
processed_df = pd.DataFrame(
columns=[
"sentence_id",
"article_id",
"sentence_pos",
"sentence",
"token_start",
"token_end",
"char_start",
"char_end",
"ner_score",
"pred_mention",
"pred_ner_label",
"place",
"year",
"publication",
"place_wqid",
"gold_mention",
"gold_entity_link",
"gold_ner_label",
"candidates",
],
data=rows,
)
print(f"Saving to {os.path.join(self.data_path,self.dataset,f'{self.myner.model}_{cand_approach}')}")
output_path = (
os.path.join(self.data_path,self.dataset,f"{self.myner.model}_{cand_approach}")
)
# List of columns to merge (i.e. columns where we have indicated
# out data splits), and "article_id", the columns on which we
# will merge the data:
keep_columns = [
"article_id",
"apply",
"originalsplit",
"withouttest",
"Ashton1860",
"Dorchester1820",
"Dorchester1830",
"Dorchester1860",
"Manchester1780",
"Manchester1800",
"Manchester1820",
"Manchester1830",
"Manchester1860",
"Poole1860",
]
# Add data splits from original dataframe:
df = self.dataset_df[[c for c in keep_columns if c in self.dataset_df.columns]]
# Convert article_id to string (it's read as an int):
df = df.assign(article_id=lambda d: d["article_id"].astype(str))
processed_df = processed_df.assign(
article_id=lambda d: d["article_id"].astype(str)
)
processed_df = pd.merge(processed_df, df, on=["article_id"], how="left")
# Store mentions dataframe:
processed_df.to_csv(output_path + "_mentions.tsv", sep="\t")
return processed_df
def store_results(
self,
task: Literal["ner", "linking"],
how_split: str,
) -> None:
"""
Function which stores the results of an experiment in the format required
by the HIPE 2020 evaluation scorer.
Arguments:
task (Literal["ner", "linking"]): either "ner" or "linking". Store the
results for just NER or with links as well.
how_split (str): which way of splitting the data are we using?
It could be the ``"originalsplit"`` or ``"Ashton1860"``, for
example, which would mean that ``"Ashton1860"`` is left out for
test only.
Returns:
None.
"""
# Find article ids of the corresponding test set (e.g. 'dev' of the original split,
# 'test' of the Ashton1860 split, etc):
all = self.dataset_df
test_articles = list(all[all[how_split] == "test"].article_id.unique())
test_articles = [str(art) for art in test_articles]
# Path to scorer results:
hipe_scorer_results_path = os.path.join(self.results_path, self.dataset)
Path(hipe_scorer_results_path).mkdir(parents=True, exist_ok=True)
scenario_name = ""
if task == "ner":
scenario_name += task + "_" + self.myner.model + "_"
# Store predictions results formatted for CLEF-HIPE scorer:
preds_name = "preds"
process_data.store_for_scorer(
hipe_scorer_results_path,
scenario_name + preds_name,
self.processed_data["preds"],
test_articles,
)
# Store gold standard results formatted for CLEF-HIPE scorer:
process_data.store_for_scorer(
hipe_scorer_results_path,
scenario_name + "trues",
self.processed_data["trues"],
test_articles,
)
if task == "linking":
scenario_name += task + "_" + self.myner.model + "_"
cand_approach = self.myranker.method
if self.myranker.method == "deezymatch":
cand_approach += "+" + str(
self.myranker.deezy_parameters["num_candidates"]
)
cand_approach += "+" + str(
self.myranker.deezy_parameters["selection_threshold"]
)
scenario_name += cand_approach + "_" + how_split + "_"
link_approach = self.mylinker.method
if self.mylinker.method == "reldisamb":
if self.mylinker.rel_params["with_publication"]:
link_approach += "+wpubl"
if self.mylinker.rel_params["without_microtoponyms"]:
link_approach += "+wmtops"
if self.mylinker.rel_params["do_test"]:
link_approach += "_test"
# Store predictions results formatted for CLEF-HIPE scorer:
process_data.store_for_scorer(
hipe_scorer_results_path,
scenario_name + link_approach,
self.processed_data["preds"],
test_articles,
)
# Store gold standard results formatted for CLEF-HIPE scorer:
process_data.store_for_scorer(
hipe_scorer_results_path,
scenario_name + "trues",
self.processed_data["trues"],
test_articles,
)
# If task is "linking", store the skyline results (but not for the
# ranking method of REL):
process_data.store_for_scorer(
hipe_scorer_results_path,
scenario_name + "skys",
self.processed_data["skys"],
test_articles,
)
def linking_experiments(self) -> None:
"""
Run entity linking experiments on the processed data.
This function performs the entity linking experiments using the
prepared data according to the different configurations of the
recogniser, ranker and linker. The experiments are performed on
different data splits and store the results in the specified format
required by the HIPE scorer. Additionally, it provides an option to
run end-to-end REL experiments.
Returns:
None.
Note:
The results of the experiments are stored in the
``self.processed_data`` attribute of the Experiment instance.
"""
# Create a mention-based dataframe for the linking experiments:
processed_df = self.create_mentions_df()
self.processed_data["processed_df"] = processed_df
# Experiments data splits:
if self.test_split == "dev":
list_test_splits = ["withouttest"]
if self.test_split == "test":
if self.dataset == "hipe":
list_test_splits = ["originalsplit"]
elif self.dataset == "lwm":
list_test_splits = [
"originalsplit",
# "Ashton1860",
# "Dorchester1820",
# "Dorchester1830",
# "Dorchester1860",
# "Manchester1780",
# "Manchester1800",
# "Manchester1820",
# "Manchester1830",
# "Manchester1860",
# "Poole1860",
]
if self.test_split == "apply":
list_test_splits = ["apply"]
# ------------------------------------------
# Iterate over each linking experiments, each will have its own
# results file:
for split in list_test_splits:
original_df = self.dataset_df
processed_df = self.processed_data["processed_df"]
test_original = original_df[original_df[split] == "test"]
test_processed = processed_df[processed_df[split] == "test"]
if split == "apply":
# This is not used in the experiments: in the "apply" mode, we are
# training on what would be train+dev in the originalsplit, and
# leave test for development. We're just testing on dev itself
# to avoid the code failing. The model trained with this scenario
# should just be used with new data not in the experiments.
test_original = original_df[original_df[split] == "dev"]
test_processed = processed_df[processed_df[split] == "dev"]
# Get ids of articles in each split:
test_article_ids = list(test_original.article_id.astype(str))
# Train a linking model if needed (it requires myranker to generate potential
# candidates to the training set):
print("Train EL model using:", split)
linking_model = self.mylinker.train_load_model(self.myranker, split=split)
# Dictionary of sentences:
# {k1 : {k2 : v}}, where k1 is article id, k2 is
# sentence pos, and v is the sentence text.
nested_sentences_dict = dict()
for key, val in self.processed_data["dSentences"].items():
key1, key2 = key.split("_")
key2 = int(key2)
if key1 in nested_sentences_dict:
nested_sentences_dict[key1][key2] = val
else:
nested_sentences_dict[key1] = {key2: val}
# Predict:
print("Process data into sentences.")
to_append = []
mentions_dataset = dict()
all_cands = dict()
for i, row in tqdm(test_processed.iterrows()):
prediction = dict()
mention_data = row.to_dict()
sentence_id = mention_data["sentence_id"]
article_id = mention_data["article_id"]
prediction["mention"] = mention_data["pred_mention"]
# Generate left-hand context:
left_context = ""
sent_idx = int(mention_data["sentence_pos"])
if sent_idx - 1 in nested_sentences_dict[article_id]:
left_context = nested_sentences_dict[article_id][sent_idx - 1]
# Generate right-hand context:
right_context = ""
if sent_idx + 1 in nested_sentences_dict[article_id]:
right_context = nested_sentences_dict[article_id][sent_idx + 1]
prediction["context"] = [left_context, right_context]
prediction["candidates"] = mention_data["candidates"]
prediction["gold"] = ["NONE"]
prediction["ner_score"] = mention_data["ner_score"]
prediction["pos"] = mention_data["char_start"]
prediction["sent_idx"] = sent_idx
prediction["end_pos"] = mention_data["char_end"]
prediction["ngram"] = mention_data["pred_mention"]
prediction["conf_md"] = mention_data["ner_score"]
prediction["tag"] = mention_data["pred_ner_label"]
prediction["sentence"] = mention_data["sentence"]
prediction["place"] = mention_data["place"]
prediction["place_wqid"] = mention_data["place_wqid"]
if self.mylinker.method == "reldisamb":
if (
self.mylinker.rel_params["without_microtoponyms"]
and mention_data["pred_ner_label"] != "LOC"
):
prediction["candidates"] = dict()
if sentence_id in mentions_dataset:
mentions_dataset[sentence_id].append(prediction)
else:
mentions_dataset[sentence_id] = [prediction]
all_cands.update({prediction["mention"]: prediction["candidates"]})
if self.mylinker.method == "reldisamb":
rel_resolved = dict()
for sentence_id in mentions_dataset:
article_dataset = {sentence_id: mentions_dataset[sentence_id]}
article_dataset = rel_utils.rank_candidates(
article_dataset,
all_cands,
self.mylinker.linking_resources["mentions_to_wikidata"],
)
if self.mylinker.rel_params["with_publication"]:
# If "publ", add an artificial publication entry:
article_dataset = rel_utils.add_publication(article_dataset)
predicted = linking_model.predict(article_dataset)
if self.mylinker.rel_params["with_publication"]:
# ... and if "publ", now remove the artificial publication entry!
predicted[sentence_id].pop()
for i in range(len(predicted[sentence_id])):
combined_mention = article_dataset[sentence_id][i]
combined_mention["prediction"] = predicted[sentence_id][i][
"prediction"
]
combined_mention["ed_score"] = predicted[sentence_id][i][
"conf_ed"
]
if sentence_id in rel_resolved:
rel_resolved[sentence_id].append(combined_mention)
else:
rel_resolved[sentence_id] = [combined_mention]
mentions_dataset[sentence_id] = rel_resolved[sentence_id]
for i, row in tqdm(test_processed.iterrows()):
prediction = dict()
for mention in mentions_dataset[row["sentence_id"]]:
if (
int(mention["pos"]) == int(row["char_start"])
and int(mention["sent_idx"]) == int(row["sentence_pos"])
and mention["mention"] == row["pred_mention"]
):
prediction = mention
if self.mylinker.method in ["mostpopular", "bydistance"]:
# Run entity linking per mention:
selected_cand = self.mylinker.run(
{
"candidates": prediction["candidates"],
"place_wqid": prediction["place_wqid"],
}
)
prediction["prediction"] = selected_cand[0]
prediction["ed_score"] = round(selected_cand[1], 3)
to_append.append(
[
prediction["prediction"],
round(prediction["ed_score"], 3),
]
)
test_df = test_processed.copy()
test_df[["pred_wqid", "ed_score"]] = to_append
# Prepare data for scorer:
self.processed_data = process_data.prepare_storing_links(
self.processed_data, test_article_ids, test_df, self.end_to_end_eval
)
# Store linking results:
self.store_results(
task="linking",
how_split=split,
)
# -----------------------------------------------
# Run end-to-end REL experiments:
if self.rel_experiments == True:
from t_res.utils import rel_e2e
rel_e2e.run_rel_experiments(self)