-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathmain_blindPnP.py
94 lines (66 loc) · 2.69 KB
/
main_blindPnP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import os
import random
from easydict import EasyDict as edict
import json
import logging
import sys
import torch.backends.cudnn as cudnn
import torch.utils.data
from config import get_config
from lib.data_loaders import make_data_loader
from trainer import BlindPnPTrainer
# logging
ch = logging.StreamHandler(sys.stdout)
logging.getLogger().setLevel(logging.INFO)
logging.basicConfig(
format='%(asctime)s %(message)s', datefmt='%m/%d %H:%M:%S', handlers=[ch])
logging.basicConfig(level=logging.INFO, format="")
# main function
def main(configs):
# train and validation dataloaders
train_loader = make_data_loader(configs, "train", configs.train_batch_size, num_threads = configs.train_num_thread, shuffle=True)
val_loader = make_data_loader(configs, "valid", 1, num_threads = configs.val_num_thread, shuffle=False)
trainer = BlindPnPTrainer(configs, train_loader, val_loader)
trainer.train()
if __name__ == '__main__':
configs = get_config()
# -------------------------------------------------------------
"""You can change the configurations here or in the file config.py"""
# dataset dir
# configs.data_dir = "/media/liu/data"
# dataset used
# "megaDepth", "modelnet40", "nyu_non_overlap"
configs.dataset = "megaDepth"
# 1e-3 for megaDepth; 1e-4 for modelnet40; 1e-4 for nyu_non_overlap
configs.train_lr = 1e-3
# select which GPU to be used
configs.gpu_inds = 0
# This is a debug number, set it to whatever you want
configs.debug_nb = "preTrained"
# training batch size
configs.train_batch_size = 12
# if your training is terminated unexpectly, uncomment the following line and set the resume_dir to continue
# configs.resume_dir = 'output'
# -------------------------------------------------------------
dconfig = vars(configs)
if configs.resume_dir:
resume_config = json.load(open(configs.resume_dir + "/" + configs.dataset + "/" + configs.debug_nb + '/config.json', 'r'))
for k in dconfig:
if k in resume_config:
dconfig[k] = resume_config[k]
dconfig['resume'] = os.path.join(resume_config['out_dir'], resume_config['dataset'], configs.debug_nb) + '/checkpoint.pth'
else:
dconfig['resume'] = None
# print the configurations
logging.info('===> Configurations')
for k in dconfig:
logging.info(' {}: {}'.format(k, dconfig[k]))
# Convert to dict
configs = edict(dconfig)
# set the seeds
if configs.train_seed is not None:
random.seed(configs.train_seed)
torch.manual_seed(configs.train_seed)
torch.cuda.manual_seed(configs.train_seed)
cudnn.deterministic = True
main(configs)