-
Notifications
You must be signed in to change notification settings - Fork 0
/
Snow3D_old.bib
754 lines (675 loc) · 30.9 KB
/
Snow3D_old.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
@article{calonne2015macroscopic,
title={Macroscopic modeling of heat and water vapor transfer with phase change in dry snow based on an upscaling method: Influence of air convection},
author={Calonne, N and Geindreau, C and Flin, F},
journal={Journal of Geophysical Research: Earth Surface},
volume={120},
number={12},
pages={2476--2497},
year={2015},
publisher={Wiley Online Library},
doi={10.1002/2015JF003605}
}
@book{auriault2009homogenization,
title={Homogenization of Coupled Phenomena in Heterogenous Media},
author={Auriault, JL and Boutin, C and Geindreau, C},
publisher={ISTE Ltd and John Wiley \& Sons},
year={2009}
}
@article{libbrecht2019snow,
title={Snow crystals},
author={Libbrecht, Kenneth G},
journal={arXiv preprint arXiv:1910.06389},
url={https://arxiv.org/abs/1910.06389},
year={2019}
}
@article{calonne_thermal_2019,
title = {Thermal {Conductivity} of {Snow}, {Firn}, and {Porous} {Ice} {From} 3‐{D} {Image}‐{Based} {Computations}},
volume = {46},
issn = {0094-8276, 1944-8007},
doi = {10.1029/2019GL085228},
language = {en},
number = {22},
journal = {Geophysical Research Letters},
author = {Calonne, Neige and Milliancourt, Lucas and Burr, Alexis and Philip, Armelle and Martin, Christophe L. and Flin, Frederic and Geindreau, Christian},
month = nov,
year = {2019},
pages = {13079--13089},
}
@article{calonne_3D_2012,
title = {3-{D} image-based numerical computations of snow permeability: links to specific surface area, density, and microstructural anisotropy},
volume = {6},
issn = {1994-0424},
shorttitle = {3-{D} image-based numerical computations of snow permeability},
doi = {10.5194/tc-6-939-2012},
language = {en},
number = {5},
journal = {The Cryosphere},
author = {Calonne, N. and Geindreau, C. and Flin, F. and Morin, S. and Lesaffre, B. and Rolland du Roscoat, S. and Charrier, P.},
year = {2012},
pages = {939--951},
}
@article{calonne_numerical_2011,
title = {Numerical and experimental investigations of the effective thermal conductivity of snow},
volume = {38},
copyright = {Copyright 2011 by the American Geophysical Union.},
issn = {1944-8007},
doi = {10.1029/2011GL049234},
language = {en},
number = {23},
journal = {Geophysical Research Letters},
author = {Calonne, N. and Flin, F. and Morin, S. and Lesaffre, B. and Roscoat, S. Rolland du and Geindreau, C.},
year = {2011},
keywords = {conductivity, microstructure, snow, thermal},
}
@phdthesis{granger_physique_2019,
type = {PhD. thesis},
title = {Crystal growth physics in dry snow metamorphism: characterisation and modeling of kinetics effects},
copyright = {Licence Etalab},
urldate = {2020-06-09},
school = {Université Grenoble Alpes (ComUE)},
author = {Granger, Rémi},
collaborator = {Geindreau, Christian and Flin, Frédéric},
month = dec,
year = {2019},
URL = {https://tel.archives-ouvertes.fr/tel-03092266},
keywords = {530, Champ de phase, Coefficient cinétique, Cristalline orientation, Cristaux -- Croissance, Croissance cristalline, Crystal growth, Kinetic coefficient, Neige, Neige, Mécanique de la, Orientation cristalline, Snow, Tomographie},
}
@misc{bretin_and_denis_discrete-continuous_2015,
title = {Discrete-{Continuous} approach for deformable partitions},
author={Bretin, E and Denis, Roland and Flin, Fr{\'e}d{\'e}ric and Lachaud, Jacques-Olivier and Oudet, E and Roussillon, Tristan},
year = {2015},
pages = {41},
note={Tech. Rep. D4 of the DigitalSnow ANR Project},
}
@article{flin_temperature-gradient_2008,
title = {The temperature-gradient metamorphism of snow: vapour diffusion model and application to tomographic images},
volume = {49},
issn = {0260-3055, 1727-5644},
shorttitle = {The temperature-gradient metamorphism of snow},
doi = {10.3189/172756408787814834},
language = {en},
urldate = {2020-05-26},
journal = {Annals of Glaciology},
author = {Flin, Frédéric and Brzoska, Jean-Bruno},
year = {2008},
pages = {17--21}
}
@article{flin_full_2003,
title = {Full three-dimensional modelling of curvature-dependent snow metamorphism: first results and comparison with experimental tomographic data},
volume = {36},
issn = {0022-3727, 1361-6463},
shorttitle = {Full three-dimensional modelling of curvature-dependent snow metamorphism},
doi = {10.1088/0022-3727/36/10A/310},
language = {en},
number = {10A},
urldate = {2020-05-26},
journal = {Journal of Physics D: Applied Physics},
author = {Flin, Fr d ric and Brzoska, Jean-Bruno and Lesaffre, Bernard and Col ou, C cile and Pieritz, Romeu Andr},
year = {2003},
pages = {A49--A54}
}
@article{courville2010lattice,
title={Lattice-Boltzmann modeling of the air permeability of polar firn},
author={Courville, Zoe and H{\"o}rhold, Maria and Hopkins, Mark and Albert, Mary},
journal={Journal of Geophysical Research: Earth Surface},
volume={115},
number={F4},
year={2010},
doi={10.1029/2009JF001549},
publisher={Wiley Online Library}
}
@article{proksch2016intercomparison,
title={Intercomparison of snow density measurements: bias, precision, and vertical resolution},
author={Proksch, Martin and Rutter, Nick and Fierz, Charles and Schneebeli, Martin},
journal={The Cryosphere},
volume={10},
doi={10.5194/tc-10-371-2016},
number={1},
pages={371--384},
year={2016},
publisher={Copernicus GmbH}
}
@article{srivastava2010observation,
title={Observation of temperature gradient metamorphism in snow by X-ray computed microtomography: measurement of microstructure parameters and simulation of linear elastic properties},
author={Srivastava, PK and Mahajan, P and Satyawali, PK and Kumar, V},
journal={Annals of Glaciology},
volume={51},
doi={10.3189/172756410791386571},
number={54},
pages={73--82},
year={2010},
publisher={Cambridge University Press}
}
@article{kaempfer2005microstructural,
title={A microstructural approach to model heat transfer in snow},
author={Kaempfer, Th U and Schneebeli, M and Sokratov, SA},
journal={Geophysical Research Letters},
volume={32},
number={21},
year={2005},
doi={10.1029/2005GL023873},
publisher={Wiley Online Library}
}
@article{schleef2014influence,
title={Influence of stress, temperature and crystal morphology on isothermal densification and specific surface area decrease of new snow},
author={Schleef, S and L{\"o}we, H and Schneebeli, M},
journal={The Cryosphere},
volume={8},
number={5},
pages={1825--1838},
year={2014},
doi={10.5194/tc-8-1825-2014},
publisher={Copernicus GmbH}
}
@article{wiese_schneebeli_2017, title={Early-stage interaction between settlement and temperature-gradient metamorphism}, volume={63}, DOI={10.1017/jog.2017.31}, number={240}, journal={Journal of Glaciology}, publisher={Cambridge University Press}, author={Wiese, MAREIKE and Schneebeli, MARTIN}, year={2017}, pages={652–662}}
@article{kaempfer_phase-field_2009,
title = {Phase-field modeling of dry snow metamorphism},
volume = {79},
issn = {1539-3755, 1550-2376},
doi = {10.1103/PhysRevE.79.031502},
language = {en},
number = {3},
urldate = {2020-05-26},
journal = {Physical Review E},
author = {Kaempfer, Thomas U. and Plapp, Mathis},
year = {2009},
pages = {031502}
}
@article{bretin_phase-field_2019,
title = {Phase-field modelling and computing for a large number of phases},
volume = {53},
issn = {0764-583X, 1290-3841},
doi = {10.1051/m2an/2018075},
language = {en},
number = {3},
urldate = {2020-10-06},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
author = {Bretin, Elie and Denis, Roland and Lachaud, Jacques-Olivier and Oudet, Edouard},
year = {2019},
pages = {805--832}
}
@article{chen_generation_1992,
title = {Generation and propagation of interfaces for reaction-diffusion equations},
volume = {96},
issn = {00220396},
doi = {10.1016/0022-0396(92)90146-E},
language = {en},
number = {1},
urldate = {2020-10-26},
journal = {Journal of Differential Equations},
author = {Chen, Xinfu},
month = mar,
year = {1992},
pages = {116--141}
}
@article{thoemen_3d_2008,
title = {{3D} simulation of macroscopic heat and mass transfer properties from the microstructure of wood fibre networks},
volume = {68},
issn = {0266-3538},
doi = {10.1016/j.compscitech.2007.10.014},
language = {en},
number = {3},
journal = {Composites Science and Technology},
author = {Thoemen, Heiko and Walther, Thomas and Wiegmann, Andreas},
year = {2008},
pages = {608--616},
}
@article{kaempfer_observation_2007,
title = {Observation of isothermal metamorphism of new snow and interpretation as a sintering process},
volume = {112},
copyright = {Copyright 2007 by the American Geophysical Union.},
issn = {2156-2202},
doi = {https://doi.org/10.1029/2007JD009047},
language = {en},
number = {D24},
urldate = {2021-06-02},
journal = {Journal of Geophysical Research: Atmospheres},
author = {Kaempfer, T. U. and Schneebeli, M.},
year = {2007},
keywords = {snow, metamorphism, sintering}
}
@article{massman_review_1998,
title = {A review of the molecular diffusivities of {H2O}, {CO2}, {CH4}, {CO}, {O3}, {SO2}, {NH3}, {N2O}, {NO}, and {NO2} in air, {O2} and {N2} near {STP}},
volume = {32},
issn = {1352-2310},
doi = {10.1016/S1352-2310(97)00391-9},
language = {en},
number = {6},
urldate = {2021-07-14},
journal = {Atmospheric Environment},
author = {Massman, W. J.},
month = mar,
year = {1998},
keywords = {gaseous binary diffusion, Gaseous coefficients of diffusivity},
pages = {1111--1127}
}
@article{lowe2011interfacial,
title={Interfacial and structural relaxations of snow under isothermal conditions},
author={L{\"o}we, Henning and Spiegel, JK and Schneebeli, Martin},
journal={Journal of Glaciology},
volume={57},
number={203},
pages={499--510},
doi={10.3189/002214311796905569},
year={2011},
publisher={Cambridge University Press}
}
@article{ogawa2006representation,
title={Representation of two curvatures of surface and its application to snow physics},
author={Ogawa, Naohisa and Flin, Frederic and Brzoska, Jean Bruno},
journal={Memoirs-Hokkaido Institute of Technology},
volume={34},
pages={81},
year={2006},
publisher={The Hokkaido Institute of Technology}
}
@article{brzoska2007using,
title={Using Gaussian curvature for the 3{D} segmentation of snow grains from microtomographic data},
author={Brzoska, JB and Flin, F and Ogawa, N},
journal={Physics and Chemistry of Ice},
pages={125},
year={2007}
}
@article{lowe2013general,
title={A general treatment of snow microstructure exemplified by an improved relation for thermal conductivity},
author={L{\"o}we, H and Riche, F and Schneebeli, M},
journal={The Cryosphere},
volume={7},
number={5},
pages={1473--1480},
doi={10.5194/tc-7-1473-2013},
year={2013},
publisher={Copernicus GmbH}
}
@inproceedings{wang2012curvature,
title={Curvature-driven volumetric segmentation of binary shapes: an application to snow microstructure analysis},
author={Wang, Xi and Gillibert, Luc and Flin, Fr{\'e}d{\'e}ric and Coeurjolly, David},
booktitle={Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012)},
pages={742--745},
year={2012},
organization={IEEE}
}
@article{berryman1998planar,
title={Planar spatial correlations, anisotropy, and specific surface area of stationary random porous media},
author={Berryman, James G},
journal={Journal of Applied Physics},
volume={83},
number={3},
pages={1685--1693},
year={1998},
publisher={American Institute of Physics},
doi={10.1063/1.366885}
}
@article{miller_microstructural_2003,
title = {A microstructural approach to predict dry snow metamorphism in generalized thermal conditions},
volume = {37},
issn = {0165232X},
doi = {10.1016/j.coldregions.2003.07.001},
language = {en},
number = {3},
urldate = {2020-10-26},
journal = {Cold Regions Science and Technology},
author = {Miller, D.A. and Adams, E.E. and Brown, R.L.},
year = {2003},
pages = {213--226}
}
@article{miller_microstructural_2009,
title = {A microstructural dry-snow metamorphism model for kinetic crystal growth},
volume = {55},
issn = {0022-1430, 1727-5652},
doi = {10.3189/002214309790794832},
language = {en},
number = {194},
urldate = {2020-10-26},
journal = {Journal of Glaciology},
author = {Miller, D.A. and Adams, E.E.},
year = {2009},
pages = {1003--1011}
}
@article{colbeck_1980,
title={Thermodynamics of snow metamorphism due to variations in curvature},
volume={26},
DOI={10.3189/S0022143000010832},
number={94},
journal={Journal of Glaciology},
publisher={Cambridge University Press},
author={Colbeck, S. C.},
year={1980},
pages={291–301}
}
@article{flin_three-dimensional_2004,
title = {Three-dimensional geometric measurements of snow microstructural evolution under isothermal conditions},
volume = {38},
issn = {0260-3055, 1727-5644},
doi = {10.3189/172756404781814942},
language = {en},
urldate = {2020-05-26},
journal = {Annals of Glaciology},
author = {Flin, Frédéric and Brzoska, Jean-Bruno and Lesaffre, Bernard and Coléou, Cécile and Pieritz, Romeu André},
year = {2004},
pages = {39--44},
}
@article{granger_orientation_2020,
title = {Orientation selective grain activity in snow under temperature gradient metamorphism observed with {Diffraction} {Contrast} {Tomography}},
language = {en},
author = {Granger, Rémi and Flin, Frédéric and Ludwig, Wolfgang and Hammad, Ismail and Geindreau, Christian},
year = {2020},
pages = {26}
}
@article{calonne2015celldym,
title={CellDyM: A room temperature operating cryogenic cell for the dynamic monitoring of snow metamorphism by time-lapse X-ray microtomography},
author={Calonne, N and Flin, F and Lesaffre, B and Dufour, A and Roulle, J and Pugli{\`e}se, P and Philip, A and Lahoucine, F and Geindreau, C and Panel, J-M and Rolland du Roscoat, S and Charrier, P},
journal={Geophysical Research Letters},
volume={42},
number={10},
doi={10.1002/2015GL063541},
pages={3911--3918},
year={2015},
publisher={Wiley Online Library}
}
@article{calonne_macroscopic_2014,
title = {Macroscopic {Modeling} for {Heat} and {Water} {Vapor} {Transfer} in {Dry} {Snow} by {Homogenization}},
volume = {118},
doi = {10.1021/jp5052535},
number = {47},
journal = {The Journal of Physical Chemistry B},
author = {Calonne, Neige and Geindreau, Christian and Flin, Frédéric},
year = {2014},
pmid = {25011981},
pages = {13393--13403}
}
@article{calonne_study_2014,
title={Study of a temperature gradient metamorphism of snow from 3-D images: time evolution of microstructures, physical properties and their associated anisotropy},
author={Calonne, Neige and Flin, Fr{\'e}d{\'e}ric and Geindreau, Christian and Lesaffre, Bernard and Rolland du Roscoat, S},
journal={The Cryosphere},
volume={8},
number={6},
doi={10.5194/tc-8-2255-2014},
pages={2255--2274},
year={2014},
publisher={Copernicus GmbH}
}
@article{tc-8-2255-2014,
title = {Study of a temperature gradient metamorphism of snow from 3-D images: time evolution of microstructures, physical properties and their associated anisotropy},
author = {Calonne, N. and Flin, F. and Geindreau, C. and Lesaffre, B. and Rolland du Roscoat, S.},
journal = {The Cryosphere},
volume = {8},
year = {2014},
number = {6},
pages = {2255--2274},
doi = {10.5194/tc-8-2255-2014}
}
@article{dumont2021experimental,
title={Experimental and model-based investigation of the links between snow bidirectional reflectance and snow microstructure},
author={Dumont, Marie and Flin, Frederic and Malinka, Aleksey and Brissaud, Olivier and Hagenmuller, Pascal and Lapalus, Philippe and Lesaffre, Bernard and Dufour, Anne and Calonne, Neige and Rolland du Roscoat, Sabine},
journal={The Cryosphere},
volume={15},
number={8},
pages={3921--3948},
year={2021},
publisher={Copernicus GmbH},
doi ={10.5194/tc-15-3921-2021}
}
@inproceedings{flin2011computations,
title={On the computations of specific surface area and specific grain contact area from snow 3{D} images},
author={Flin, Fr{\'e}d{\'e}ric and Lesaffre, Bernard and Dufour, Anne and Gillibert, Luc and Hasan, Alsidqi and Rolland du Roscoat, Sabine and Cabanes, Simon and Pugli{\`e}se, Philippe},
booktitle={{Furukawa, Y., ed., Proceedings of the 12th International Conference on the Physics and Chemistry (PCI 2010) of Ice held at Sapporo, Japan, on 5-10 September 2010}},
pages={321--328},
year={2011},
organization={Hokkaido University Press, Sapporo, Japan}
}
@PHDTHESIS{grang2019,
title = "Physique de la croissance cristalline pour les métamorphoses de neige sèche : caractérisation et modélisation des effets cinétiques",
author = "Granger, Rémi",
year = "2019",
note = "Thèse de doctorat dirigée par Geindreau, Christian et Flin, Frédéric Matériaux, Mécanique, Génie civil, Electrochimie Université Grenoble Alpes (ComUE) 2019",
}
@article{gofflow,
title={Low-pressure properties of water from-160 to 212 F. 1946},
author={Goff, JA and Gratch, S},
journal={Transactions of the American society of heating and ventilation engineers: New York},
pages={95--122},
year={1946}
}
@article{fierz2009international,
title={The international classification for seasonal snow on the ground},
author={Fierz, CRLA and Armstrong, Richard L and Durand, Yves and Etchevers, Pierre and Greene, Ethan and McClung, David M and Nishimura, Kouichi and Satyawali, Pramod K and Sokratov, Sergey A},
year={2009},
publisher={UNESCO},
journal = {Technical Documents in Hydrology},
}
@article{colbeck_theory_1983,
title = {Theory of metamorphism of dry snow},
volume = {88},
issn = {01480227},
doi = {10.1029/JC088iC09p05475},
language = {en},
number = {C9},
urldate = {2020-11-17},
journal = {Journal of Geophysical Research: Oceans},
author = {Colbeck, S. C.},
month = jun,
year = {1983},
pages = {5475--5482}
}
@article{libbrecht2005physics,
title={The physics of snow crystals},
author={Libbrecht, Kenneth G},
journal={Reports on progress in physics},
volume={68},
number={4},
pages={855},
year={2005},
doi={10.1088/0034-4885/68/4/R03},
publisher={IOP Publishing}
}
@article{libbrecht_measurements_2013,
title = {Measurements of surface attachment kinetics for faceted ice crystal growth},
volume = {377},
issn = {00220248},
doi = {10.1016/j.jcrysgro.2013.04.037},
language = {en},
urldate = {2020-11-19},
journal = {Journal of Crystal Growth},
author = {Libbrecht, Kenneth G. and Rickerby, Mark E.},
year = {2013},
pages = {1--8}
}
@article{vetter_simulating_2010,
title = {Simulating isothermal aging of snow},
volume = {89},
issn = {0295-5075, 1286-4854},
doi = {10.1209/0295-5075/89/26001},
number = {2},
urldate = {2020-11-17},
journal = {EPL (Europhysics Letters)},
author = {Vetter, R. and Sigg, S. and Singer, H. M. and Kadau, D. and Herrmann, H. J. and Schneebeli, M.},
year = {2010},
pages = {26001}
}
@article{lehning_physical_2002,
title = {A physical {SNOWPACK} model for the {Swiss} avalanche warning {Part} {III}: meteorological forcing, thin layer formation and evaluation},
language = {en},
journal = {Cold Regions Science and Technology},
author = {Lehning, Michael and Bartelt, Perry and Brown, Bob and Fierz, Charles},
doi={10.1016/S0165-232X(02)00072-1},
year = {2002},
pages = {16}
}
@incollection{furukawa2015snow,
title={Snow and ice crystal growth},
author={Furukawa, Yoshinori},
booktitle={Handbook of crystal growth},
pages={1061--1112},
year={2015},
publisher={Elsevier}
}
@article{yokoyama1990pattern,
title={Pattern formation in growth of snow crystals occurring in the surface kinetic process and the diffusion process},
author={Yokoyama, Etsuro and Kuroda, Toshio},
journal={Physical Review A},
volume={41},
number={4},
pages={2038},
doi={10.1103/PhysRevA.41.2038},
year={1990},
publisher={APS}
}
@phdthesis{flin2004snow,
title={Snow metamorphism description from 3{D} images obtained by {X-ray} microtomography},
author={Flin, F.},
year={2004},
type={PhD. thesis},
url={http://www.umr-cnrm.fr/cen/microstructure/these/flin_these_pdf.zip},
school={Universit{\'e} Grenoble 1}
}
@article{vionnet_detailed_2012,
title = {The detailed snowpack scheme {Crocus} and its implementation in {SURFEX} v7.2},
volume = {5},
issn = {1991-9603},
doi = {10.5194/gmd-5-773-2012},
language = {en},
number = {3},
urldate = {2020-05-29},
journal = {Geoscientific Model Development},
author = {Vionnet, V. and Brun, E. and Morin, S. and Boone, A. and Faroux, S. and Le Moigne, P. and Martin, E. and Willemet, J.-M.},
year = {2012},
pages = {773--791}
}
@article{flin_adaptive_2005,
title = {Adaptive estimation of normals and surface area for discrete 3-{D} objects: application to snow binary data from {X}-ray tomography},
volume = {14},
issn = {1941-0042},
shorttitle = {Adaptive estimation of normals and surface area for discrete 3-{D} objects},
doi = {10.1109/TIP.2005.846021},
number = {5},
journal = {IEEE Transactions on Image Processing},
author = {Flin, F. and Brzoska, J.-B. and Coeurjolly, D. and Pieritz, R.A. and Lesaffre, B. and Coleou, C. and Lamboley, P. and Teytaud, O. and Vignoles, G.L. and Delesse, J.-F.},
month = may,
year = {2005},
pages = {585--596}
}
@article{torquato2002random,
title={Random heterogeneous materials: microstructure and macroscopic properties},
author={Torquato, Salvatore and Haslach Jr, HW},
journal={Appl. Mech. Rev.},
volume={55},
number={4},
pages={B62--B63},
year={2002}
}
@article{hagenmuller_motion_2019,
title = {Motion of dust particles in dry snow under temperature gradient metamorphism},
volume = {13},
issn = {1994-0424},
doi = {10.5194/tc-13-2345-2019},
language = {en},
number = {9},
urldate = {2020-11-27},
journal = {The Cryosphere},
author = {Hagenmuller, P and Flin, F and Dumont, M and Tuzet, F and Peinke, I and Lapalus, P and Dufour, A and Roulle, J and Pézard, L and Voisin, D and Ando, E and Rolland du Roscoat, S and Charrier, P},
year = {2019},
pages = {2345--2359}
}
@article{murphy2005review,
title={Review of the vapour pressures of ice and supercooled water for atmospheric applications},
author={Murphy, Daniel M and Koop, Thomas},
journal={Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography},
volume={131},
number={608},
pages={1539--1565},
doi={10.1256/qj.04.94},
year={2005},
publisher={Wiley Online Library}
}
@book{petrenko1999physics,
title={Physics of ice},
author={Petrenko, Victor F and Whitworth, Robert W},
year={1999},
publisher={Oxford University Press Inc., New York}
}
@article{Hammonds_2015_part1,
title = {Investigating the thermophysical properties of the ice–snow interface under a controlled temperature gradient: Part I: Experiments \& Observations},
journal = {Cold Regions Science and Technology},
volume = {120},
pages = {157-167},
year = {2015},
issn = {0165-232X},
doi = {https://doi.org/10.1016/j.coldregions.2015.09.006},
url = {https://www.sciencedirect.com/science/article/pii/S0165232X15002025},
author = {Kevin Hammonds and Ross Lieb-Lappen and Ian Baker and Xuan Wang},
keywords = {Ice lens, Ice crystal growth, Interface, Kinetic snow metamorphism, Temperature gradient, Micro-CT},
abstract = {Of critical importance for avalanche forecasting, is the ability to draw meaningful conclusions from only a handful of field observations. To that end, it is common for avalanche forecasters to not only have to rely on sparse data, but also on their own intuitive understanding of how their field-based observations may be correlated to complex physical processes responsible for structural instability within a snowpack. One such well-documented basis for mechanical instability to increase within a snowpack is that caused by the presence of a buried ice lens or ice crust. Although such icy layers are naturally formed and frequently encountered in seasonal snowpacks, very little is known about the microstructural evolution of these layers and how they contribute toward weak layer development. Furthermore, in terms of assessing the structural integrity of the snowpack, there is at the present time no consistent treatment for identifying these layers a priori as problematic or benign. To address this issue, we have created an idealized laboratory scenario in which we can study how an artificially created ice lens may affect the thermophysical and microstructural state of the interface between the ice lens and adjacent layers of snow while under a controlled temperature gradient of primarily −100Km−1. Utilizing in situ micro-thermocouple measurements, our findings show that a super-temperature gradient exists within only a millimeter of the ice lens surface that is many times greater than the imposed bulk temperature gradient. Such large temperature gradients on such a small scale would not be measurable by most field-based instrumentation and to our knowledge these laboratory-based in situ measurements are the first of their kind. Additionally, we have also investigated and characterized the microstructural evolution of the ice–snow interface with X-ray Micro-computed Tomography and Scanning Electron Microscopy. In our analysis, we have been able to identify distinct regions of simultaneous ice crystal growth, sublimation, and kinetic snow metamorphism. We hold that these observations are both consistent with previous laboratory studies and observations made in the natural environment.}
}
@article{Hammonds_2016_part2,
title = {Investigating the thermophysical properties of the ice–snow interface under a controlled temperature gradient Part II: Analysis},
journal = {Cold Regions Science and Technology},
volume = {125},
pages = {12-20},
year = {2016},
issn = {0165-232X},
doi = {https://doi.org/10.1016/j.coldregions.2016.01.006},
url = {https://www.sciencedirect.com/science/article/pii/S0165232X16300015},
author = {Kevin Hammonds and Ian Baker},
keywords = {Ice lens, Interface, Temperature gradient, Effective thermal conductivity, Thermal contact resistance, Kinetic snow metamorphism},
abstract = {In order to develop a more intuitive understanding of the physical mechanisms and processes responsible for enhanced kinetic snow metamorphism at the ice–snow interface, we have performed a detailed and quantitative analysis of the in situ micro-thermocouple data originally presented in Part I of this study. In our detailed analysis, we have focused primarily on the observed temperature gradients from within one millimeter above and below the ice–snow interface, as measured in our laboratory prepared specimen. Our findings show via a simple one-dimensional model for energy balance that thermal contact resistance followed by decreases in the effective thermal conductivity are the primary contributors to the dramatic increases in the local temperature gradient near the ice–snow interface. Additional mechanisms for heat and mass transfer are also reviewed in our analysis, including the water vapor flux and latent heat flux.}
}
@article{krol_2016,
title={Analysis of local ice crystal growth in snow},
volume={62},
DOI={10.1017/jog.2016.32},
number={232},
journal={Journal of Glaciology},
publisher={Cambridge University Press},
author={Krol, Quirine and Loewe, Henning},
year={2016},
pages={378–390}
}
@misc{denis_2015_oral,
title = {Simulation multi-label phase-field},
author={Denis, Roland},
year = {2015},
note={oral presentation of the DigitalSnow ANR Project, meeting held in Autrans, 8th July 2015},
url={https://projet.liris.cnrs.fr/dsnow/doc/Autrans-Juin2015/presentation-Roland-Denis.pdf}
}
@article{Chen_2010,
author = {Chen, Si and Baker, Ian},
title = {Evolution of individual snowflakes during metamorphism},
journal = {Journal of Geophysical Research: Atmospheres},
volume = {115},
number = {D21},
pages = {},
keywords = {snow metamorphism, X-ray computed microtomography, snowflake microstructure},
doi = {https://doi.org/10.1029/2010JD014132},
url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2010JD014132},
eprint = {https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2010JD014132},
abstract = {The morphological changes of individual snowflakes evolving within a dry snow aggregate have been studied using X-ray computed microtomography (micro-CT). Fresh dry snow was collected during a snowfall, sealed, and stored in a −5°C cold room between periodic observations using micro-CT. Time series 3-D images were used to examine the structural evolution of an individual snowflake within the aggregate over a 2-month period, after which the snowflake had lost its original dendritic structure. Analysis of the aggregate showed that the fraction of large ice particles increased over this period while the total number of particles decreased, presumably to lower the free energy of the snow specimen. This approach enables the study of metamorphism of individual snowflakes in a local environment close to that found in nature. The evolution of structural parameters, including the volume fraction of ice, the surface-to-volume ratio of the ice matrix, the thickness and separation of the ice structure determined by the distance transform of the ice and pore space, were monitored and analyzed using coarsening theories. The computed growth exponent was smaller than the values obtained in the earlier work by Legagneux et al. (2004) and Kaempfer and Schneebeli (2007), who also interpreted the isothermal metamorphism in terms of coarsening theories.},
year = {2010}
}
@article{bullard1997,
title = {Numerical simulations of transient-stage Ostwald ripening and coalescence in two dimensions},
journal = {Materials Science and Engineering: A},
volume = {238},
number = {1},
pages = {128-139},
year = {1997},
note = {Microstructure Evolution in Bulk Phases F},
issn = {0921-5093},
doi = {https://doi.org/10.1016/S0921-5093(97)00439-5},
url = {https://www.sciencedirect.com/science/article/pii/S0921509397004395},
author = {Jeffrey W. Bullard},
keywords = {Numerical simulations, Ostwald ripening, Coalescence},
abstract = {A new numerical method for tracking interface motion in microstructures is described and used to simulate two-dimensional, transient-stage Ostwald ripening at high volume fractions of coarsening phase. Two limiting kinetic regimes are explicitly simulated, namely diffusion-controlled mass transport and surface-attachment/detachment-limited kinetics (SALK). The simulations indicate important qualitative and quantitative differences between these two mechanisms at high volume fractions. These differences include: (1) The persistence of coalescence events under SALK that are completely absent under diffusion control; and (2) stable circular shapes for isolated domains under SALK; under diffusion control, the morphology of an isolated domain is dependent on its nearby surroundings, as reported by other investigators. Spatial correlations amongst the coarsening domains are also investigated using two-point correlation functions and medium polarization functions.}
}
@article{haffar2021x,
title={X-ray tomography for {3D} analysis of ice particles in jet {A-1} fuel},
author={Haffar, Iheb and Flin, Frederic and Geindreau, Christian and Petillon, Nicolas and Gervais, Pierre-Colin and Edery, Vincent},
journal={Powder Technology},
volume={384},
pages={200--210},
year={2021},
doi={10.1016/j.powtec.2021.01.069},
issn={0032-5910},
url={http://doi.org/10.1016/j.powtec.2021.01.069},
publisher={Elsevier}
}