forked from gkaissis/PriMIA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
299 lines (278 loc) · 11.2 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
"""
This implementation is based on the pysyft tutorial:
https://github.com/OpenMined/PySyft/blob/master/examples/tutorials/Part%2011%20-%20Secure%20Deep%20Learning%20Classification.ipynb
"""
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import torch
import configparser
import argparse
import syft as sy
import sys, os.path
from warnings import warn
from torchvision import datasets, transforms, models
from argparse import Namespace
from tqdm import tqdm
from sklearn import metrics as mt
from numpy import newaxis
from os import listdir
import json
import albumentations as a
from random import seed as rseed
from torchlib.utils import stats_table, Arguments # pylint:disable=import-error
from torchlib.models import vgg16, resnet18, conv_at_resolution
from torchlib.run_websocket_server import read_websocket_config
from torchlib.dataloader import (
AlbumentationsTorchTransform,
PathDataset,
RemoteTensorDataset,
CombinedLoader,
)
from collections import Counter
from syft.serde.compression import NO_COMPRESSION
sy.serde.compression.default_compress_scheme = NO_COMPRESSION
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", default=None, help="data to classify")
parser.add_argument(
"--model_weights",
type=str,
required=True,
default=None,
help="model weights to use",
)
parser.add_argument(
"--encrypted_inference", action="store_true", help="Perform encrypted inference"
)
parser.add_argument(
"--websockets_config",
default=None,
help="Give csv file where ip address and port of data_owner and "
"crypto_provider are given"
"\nNote: Names must be exactly like that"
"\nFirst column consists of id, host and port"
"\nIf not passed as argument virtual workers are used",
)
parser.add_argument("--cuda", action="store_true", help="Use CUDA acceleration.")
parser.add_argument(
"--http_protocol", action="store_true", help="Use HTTP instead of WS."
)
cmd_args = parser.parse_args()
use_cuda = cmd_args.cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu") # pylint: disable=no-member
state = torch.load(cmd_args.model_weights, map_location=device)
if not cmd_args.http_protocol:
warn(
"Under certain circumstances, WebSockets can fail when performing encrypted inference. If you experience errors related to 'rsv' not being implemented, consider enabling HTTP."
)
args = state["args"]
if type(args) is Namespace:
args = Arguments.from_namespace(args)
args.from_previous_checkpoint(cmd_args)
sys.stderr.write(str(args))
if not args.websockets:
torch.manual_seed(args.seed)
rseed(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if cmd_args.encrypted_inference or cmd_args.websockets_config:
hook = sy.TorchHook(torch)
if cmd_args.websockets_config:
worker_dict = read_websocket_config(cmd_args.websockets_config)
accessible_dict = dict()
for key, value in worker_dict.items():
accessible_dict[value["id"]] = value
worker_dict = accessible_dict
worker_names = [name for name in worker_dict.keys()]
assert "data_owner" in worker_names, "No data_owner in websockets config"
data_owner = sy.grid.clients.data_centric_fl_client.DataCentricFLClient(
hook,
"{:s}://{:s}:{:s}".format(
"http" if cmd_args.http_protocol else "ws",
worker_dict["data_owner"]["host"],
worker_dict["data_owner"]["port"],
),
http_protocol=cmd_args.http_protocol,
)
if cmd_args.encrypted_inference:
assert (
"crypto_provider" in worker_names
), "No crypto_provider in websockets config"
crypto_provider = sy.grid.clients.data_centric_fl_client.DataCentricFLClient(
hook,
"{:s}://{:s}:{:s}".format(
"http" if cmd_args.http_protocol else "ws",
worker_dict["crypto_provider"]["host"],
worker_dict["crypto_provider"]["port"],
),
http_protocol=cmd_args.http_protocol,
)
model_owner = sy.grid.clients.data_centric_fl_client.DataCentricFLClient(
hook,
"{:s}://{:s}:{:s}".format(
"http" if cmd_args.http_protocol else "ws",
worker_dict["model_owner"]["host"],
worker_dict["model_owner"]["port"],
),
http_protocol=cmd_args.http_protocol,
)
else:
data_owner = sy.VirtualWorker(hook, id="data_owner")
crypto_provider = sy.VirtualWorker(hook, id="crypto_provider")
model_owner = sy.VirtualWorker(hook, id="model_owner")
workers = [model_owner, data_owner]
sy.local_worker.clients = [model_owner, data_owner]
kwargs = {"num_workers": 1, "pin_memory": True} if use_cuda else {}
class_names = None
val_mean_std = (
state["val_mean_std"]
if "val_mean_std" in state.keys()
else (
torch.tensor([0.5]), # pylint:disable=not-callable
torch.tensor([0.2]), # pylint:disable=not-callable
)
if args.pretrained
else (
torch.tensor([0.5, 0.5, 0.5]), # pylint:disable=not-callable
torch.tensor([0.2, 0.2, 0.2]), # pylint:disable=not-callable
)
)
mean, std = val_mean_std
if args.data_dir == "mnist":
num_classes = 10
tf = transforms.Compose(
[
transforms.Resize(args.inference_resolution),
transforms.ToTensor(),
transforms.Normalize(mean, std),
]
)
else:
num_classes = 3
tf = [
a.Resize(args.inference_resolution, args.inference_resolution),
a.CenterCrop(args.inference_resolution, args.inference_resolution),
]
if hasattr(args, "clahe") and args.clahe:
tf.append(a.CLAHE(always_apply=True, clip_limit=(1, 1)))
tf.extend(
[
a.ToFloat(max_value=255.0),
a.Normalize(
mean.cpu().numpy()[None, None, :],
std.cpu().numpy()[None, None, :],
max_pixel_value=1.0,
),
]
)
tf = AlbumentationsTorchTransform(a.Compose(tf))
class_names = {0: "normal", 1: "bacterial pneumonia", 2: "viral pneumonia"}
loader = CombinedLoader()
if not args.pretrained:
loader.change_channels(1)
if not cmd_args.websockets_config:
dataset = PathDataset(cmd_args.data_dir, transform=tf, loader=loader,)
if cmd_args.encrypted_inference:
data = []
for d in tqdm(dataset, total=len(dataset), leave=False, desc="load data"):
data.append(d)
data = torch.stack(data)
data.tag("#inference_data")
data_owner.load_data([data])
if cmd_args.websockets_config or cmd_args.encrypted_inference:
if cmd_args.encrypted_inference:
grid = sy.PrivateGridNetwork(data_owner, crypto_provider, model_owner)
else:
grid = sy.PrivateGridNetwork(data_owner, model_owner)
data_tensor = grid.search("#inference_data")["data_owner"][0]
dataset = RemoteTensorDataset(data_tensor)
if cmd_args.websockets_config:
sy.local_worker.object_store.garbage_delay = 1
# for worker in data.keys():
# dist_dataset = [
# # n the future transforms here would be optimal but currently not supported
# sy.BaseDataset(
# data[worker][0], torch.zeros_like(data[worker][0])
# ) # transform=federated_tf
# ]
# fed_dataset = sy.FederatedDataset(dist_dataset)
# test_loader = sy.FederatedDataLoader(
# fed_dataset, batch_size=1, shuffle=False
# )
if args.model == "vgg16":
model = vgg16(
pretrained=args.pretrained,
num_classes=num_classes,
in_channels=3 if args.pretrained else 1,
adptpool=False,
input_size=args.inference_resolution,
pooling=args.pooling_type,
)
elif args.model == "simpleconv":
if args.pretrained:
warn("No pretrained version available")
model = conv_at_resolution[args.train_resolution](
num_classes=num_classes,
in_channels=3 if args.pretrained else 1,
pooling=args.pooling_type,
)
elif args.model == "resnet-18":
model = resnet18(
pretrained=args.pretrained,
num_classes=num_classes,
in_channels=3 if args.pretrained else 1,
adptpool=False,
input_size=args.inference_resolution,
pooling=args.pooling_type if hasattr(args, "pooling_type") else "avg",
)
else:
raise ValueError(
"Model name not recognised. Please enter one of 'vgg16', 'simpleconv', 'resnet-18'."
)
model.load_state_dict(state["model_state_dict"])
model.to(device)
if args.encrypted_inference:
fix_prec_kwargs = {"precision_fractional": 4, "dtype": "long"}
share_kwargs = {
"crypto_provider": crypto_provider,
"protocol": "fss",
"requires_grad": False,
}
model.fix_precision(**fix_prec_kwargs).share(*workers, **share_kwargs)
# test method
model.eval()
total_pred, total_target, total_scores = [], [], []
with torch.no_grad():
for i, data in tqdm(
enumerate(dataset),
total=len(dataset),
desc="performing inference",
leave=False,
):
if len(data.shape) > 4:
data = data.squeeze()
if len(data.shape) > 4:
raise ValueError("need 4 dimensional tensor")
while len(data.shape) < 4:
data = data.unsqueeze(0)
data = data.to(device)
## normalize data
if cmd_args.encrypted_inference:
data = (
data.fix_precision(**fix_prec_kwargs)
.share(*workers, **share_kwargs)
.get()
)
elif cmd_args.websockets_config is not None:
data = data.copy().get()
output = model(data)
if args.encrypted_inference:
output = output.get().float_prec()
pred = output.argmax(dim=1)
total_pred.append(pred.detach().cpu().item())
## should be unneccessary but somehow required
if len(dataset) == i + 1:
break
pred_dict = {"Inference Results": dict(enumerate(total_pred))}
sys.stdout.write(json.dumps(pred_dict))
print("\n{:s}".format(str(Counter(total_pred))))