Xueqian Li and Simon Lucey.
arXiv link: https://arxiv.org/abs/2403.05896
This is the code implementation of Fast Kernel Scene Flow, a fast per-point embedding-based kernel method for scene flow estimation.
With input point cloud
This code is based on PyTorch implementation, and tested on PyTorch=1.12.0, Python=3.9.15 with CUDA 11.6.
A simple installation is bash ./install.sh
.
For a detailed installation guide, please go to requirements.yml.
We directly use the datasets provided by FastNSF. You may download datasets used in the paper from these links:
-
Argoverse (390MB)
-
Waymo Open (476MB)
-
Argoverse scene flow dataset
python kernel_flow.py --device cuda:0 --dataset_name argoverse --data_path <dataset_dir> --iters 1000 --earlystopping --early_patience 10 --early_min_delta 0.001 --kernel_grid --grid_factor 0.2 --model pe --weight_decay 0. --use_dt_loss --dt_grid_factor 10. --use_all_points --alpha_init_method same_as_linear --alpha_init_scaling 1. --reg_name l1 --reg_scaling 5. --epsilon 1e-7 --pe_type RFF --pe_dim 256 --pe_sigma 0.01 --log_sigma 10. --alpha_lr 0.008
-
Waymo Open scene flow dataset
python kernel_flow.py --device cuda:0 --dataset_name waymo --data_path <dataset_dir> --iters 1000 --earlystopping --early_patience 10 --early_min_delta 0.001 --kernel_grid --grid_factor 0.2 --model pe --weight_decay 0. --use_dt_loss --dt_grid_factor 10. --use_all_points --alpha_init_method same_as_linear --alpha_init_scaling 1. --reg_name l1 --reg_scaling 5. --epsilon 1e-7 --pe_type RFF --pe_dim 256 --pe_sigma 0.01 --log_sigma 10. --alpha_lr 0.008
FastGeodis: Fast Generalised Geodesic Distance Transform
If you find the project useful for your research, you may cite,
@article{li2024fast,
title={Fast Kernel Scene Flow},
author={Li, Xueqian and Lucey, Simon},
journal={arXiv preprint arXiv:2403.05896},
year={2024}
}