forked from drprojects/superpoint_transformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
memory.py
66 lines (52 loc) · 2.13 KB
/
memory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import gc
import torch
__all__ = ['print_memory_size', 'garbage_collection_cuda']
def print_memory_size(a):
assert isinstance(a, torch.Tensor)
memory = a.element_size() * a.nelement()
if memory > 1024 * 1024 * 1024:
print(f'Memory: {memory / (1024 * 1024 * 1024):0.3f} Gb')
return
if memory > 1024 * 1024:
print(f'Memory: {memory / (1024 * 1024):0.3f} Mb')
return
if memory > 1024:
print(f'Memory: {memory / 1024:0.3f} Kb')
return
print(f'Memory: {memory:0.3f} bytes')
def is_oom_error(exception: BaseException) -> bool:
return is_cuda_out_of_memory(exception) or is_cudnn_snafu(exception) or is_out_of_cpu_memory(exception)
# based on https://github.com/BlackHC/toma/blob/master/toma/torch_cuda_memory.py
def is_cuda_out_of_memory(exception: BaseException) -> bool:
return (
isinstance(exception, RuntimeError)
and len(exception.args) == 1
and "CUDA" in exception.args[0]
and "out of memory" in exception.args[0]
)
# based on https://github.com/BlackHC/toma/blob/master/toma/torch_cuda_memory.py
def is_cudnn_snafu(exception: BaseException) -> bool:
# For/because of https://github.com/pytorch/pytorch/issues/4107
return (
isinstance(exception, RuntimeError)
and len(exception.args) == 1
and "cuDNN error: CUDNN_STATUS_NOT_SUPPORTED." in exception.args[0]
)
# based on https://github.com/BlackHC/toma/blob/master/toma/cpu_memory.py
def is_out_of_cpu_memory(exception: BaseException) -> bool:
return (
isinstance(exception, RuntimeError)
and len(exception.args) == 1
and "DefaultCPUAllocator: can't allocate memory" in exception.args[0]
)
# based on https://github.com/BlackHC/toma/blob/master/toma/torch_cuda_memory.py
def garbage_collection_cuda() -> None:
"""Garbage collection Torch (CUDA) memory."""
gc.collect()
try:
# This is the last thing that should cause an OOM error, but seemingly it can.
torch.cuda.empty_cache()
except RuntimeError as exception:
if not is_oom_error(exception):
# Only handle OOM errors
raise