@@ -141,7 +141,7 @@ def multiclass_precision(
141
141
preds : Tensor ,
142
142
target : Tensor ,
143
143
num_classes : int ,
144
- average : Optional [Literal ["micro" , "macro" , "weighted" , "none" ]] = "macro " ,
144
+ average : Optional [Literal ["micro" , "macro" , "weighted" , "none" ]] = "micro " ,
145
145
top_k : int = 1 ,
146
146
multidim_average : Literal ["global" , "samplewise" ] = "global" ,
147
147
ignore_index : Optional [int ] = None ,
@@ -209,7 +209,7 @@ def multiclass_precision(
209
209
>>> target = tensor([2, 1, 0, 0])
210
210
>>> preds = tensor([2, 1, 0, 1])
211
211
>>> multiclass_precision(preds, target, num_classes=3)
212
- tensor(0.8333 )
212
+ tensor(0.7500 )
213
213
>>> multiclass_precision(preds, target, num_classes=3, average=None)
214
214
tensor([1.0000, 0.5000, 1.0000])
215
215
@@ -221,7 +221,7 @@ def multiclass_precision(
221
221
... [0.71, 0.09, 0.20],
222
222
... [0.05, 0.82, 0.13]])
223
223
>>> multiclass_precision(preds, target, num_classes=3)
224
- tensor(0.8333 )
224
+ tensor(0.7500 )
225
225
>>> multiclass_precision(preds, target, num_classes=3, average=None)
226
226
tensor([1.0000, 0.5000, 1.0000])
227
227
@@ -230,7 +230,7 @@ def multiclass_precision(
230
230
>>> target = tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]])
231
231
>>> preds = tensor([[[0, 2], [2, 0], [0, 1]], [[2, 2], [2, 1], [1, 0]]])
232
232
>>> multiclass_precision(preds, target, num_classes=3, multidim_average='samplewise')
233
- tensor([0.3889 , 0.2778 ])
233
+ tensor([0.5000 , 0.3333 ])
234
234
>>> multiclass_precision(preds, target, num_classes=3, multidim_average='samplewise', average=None)
235
235
tensor([[0.6667, 0.0000, 0.5000],
236
236
[0.0000, 0.5000, 0.3333]])
@@ -261,7 +261,7 @@ def multilabel_precision(
261
261
target : Tensor ,
262
262
num_labels : int ,
263
263
threshold : float = 0.5 ,
264
- average : Optional [Literal ["micro" , "macro" , "weighted" , "none" ]] = "macro " ,
264
+ average : Optional [Literal ["micro" , "macro" , "weighted" , "none" ]] = "micro " ,
265
265
multidim_average : Literal ["global" , "samplewise" ] = "global" ,
266
266
ignore_index : Optional [int ] = None ,
267
267
validate_args : bool = True ,
@@ -326,7 +326,7 @@ def multilabel_precision(
326
326
>>> target = tensor([[0, 1, 0], [1, 0, 1]])
327
327
>>> preds = tensor([[0, 0, 1], [1, 0, 1]])
328
328
>>> multilabel_precision(preds, target, num_labels=3)
329
- tensor(0.5000 )
329
+ tensor(0.6667 )
330
330
>>> multilabel_precision(preds, target, num_labels=3, average=None)
331
331
tensor([1.0000, 0.0000, 0.5000])
332
332
@@ -335,7 +335,7 @@ def multilabel_precision(
335
335
>>> target = tensor([[0, 1, 0], [1, 0, 1]])
336
336
>>> preds = tensor([[0.11, 0.22, 0.84], [0.73, 0.33, 0.92]])
337
337
>>> multilabel_precision(preds, target, num_labels=3)
338
- tensor(0.5000 )
338
+ tensor(0.6667 )
339
339
>>> multilabel_precision(preds, target, num_labels=3, average=None)
340
340
tensor([1.0000, 0.0000, 0.5000])
341
341
@@ -345,7 +345,7 @@ def multilabel_precision(
345
345
>>> preds = tensor([[[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]],
346
346
... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]]])
347
347
>>> multilabel_precision(preds, target, num_labels=3, multidim_average='samplewise')
348
- tensor([0.3333 , 0.0000])
348
+ tensor([0.4000 , 0.0000])
349
349
>>> multilabel_precision(preds, target, num_labels=3, multidim_average='samplewise', average=None)
350
350
tensor([[0.5000, 0.5000, 0.0000],
351
351
[0.0000, 0.0000, 0.0000]])
@@ -451,7 +451,7 @@ def multiclass_recall(
451
451
preds : Tensor ,
452
452
target : Tensor ,
453
453
num_classes : int ,
454
- average : Optional [Literal ["micro" , "macro" , "weighted" , "none" ]] = "macro " ,
454
+ average : Optional [Literal ["micro" , "macro" , "weighted" , "none" ]] = "micro " ,
455
455
top_k : int = 1 ,
456
456
multidim_average : Literal ["global" , "samplewise" ] = "global" ,
457
457
ignore_index : Optional [int ] = None ,
@@ -519,7 +519,7 @@ def multiclass_recall(
519
519
>>> target = tensor([2, 1, 0, 0])
520
520
>>> preds = tensor([2, 1, 0, 1])
521
521
>>> multiclass_recall(preds, target, num_classes=3)
522
- tensor(0.8333 )
522
+ tensor(0.7500 )
523
523
>>> multiclass_recall(preds, target, num_classes=3, average=None)
524
524
tensor([0.5000, 1.0000, 1.0000])
525
525
@@ -531,7 +531,7 @@ def multiclass_recall(
531
531
... [0.71, 0.09, 0.20],
532
532
... [0.05, 0.82, 0.13]])
533
533
>>> multiclass_recall(preds, target, num_classes=3)
534
- tensor(0.8333 )
534
+ tensor(0.7500 )
535
535
>>> multiclass_recall(preds, target, num_classes=3, average=None)
536
536
tensor([0.5000, 1.0000, 1.0000])
537
537
@@ -540,7 +540,7 @@ def multiclass_recall(
540
540
>>> target = tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]])
541
541
>>> preds = tensor([[[0, 2], [2, 0], [0, 1]], [[2, 2], [2, 1], [1, 0]]])
542
542
>>> multiclass_recall(preds, target, num_classes=3, multidim_average='samplewise')
543
- tensor([0.5000, 0.2778 ])
543
+ tensor([0.5000, 0.3333 ])
544
544
>>> multiclass_recall(preds, target, num_classes=3, multidim_average='samplewise', average=None)
545
545
tensor([[1.0000, 0.0000, 0.5000],
546
546
[0.0000, 0.3333, 0.5000]])
@@ -571,7 +571,7 @@ def multilabel_recall(
571
571
target : Tensor ,
572
572
num_labels : int ,
573
573
threshold : float = 0.5 ,
574
- average : Optional [Literal ["micro" , "macro" , "weighted" , "none" ]] = "macro " ,
574
+ average : Optional [Literal ["micro" , "macro" , "weighted" , "none" ]] = "micro " ,
575
575
multidim_average : Literal ["global" , "samplewise" ] = "global" ,
576
576
ignore_index : Optional [int ] = None ,
577
577
validate_args : bool = True ,
0 commit comments