forked from 3DTopia/LGM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
convert.py
462 lines (347 loc) · 17.1 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
import os
import tyro
import tqdm
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from core.options import AllConfigs, Options
from core.gs import GaussianRenderer
import mcubes
import nerfacc
import nvdiffrast.torch as dr
import kiui
from kiui.mesh import Mesh
from kiui.mesh_utils import clean_mesh, decimate_mesh
from kiui.mesh_utils import laplacian_smooth_loss, normal_consistency
from kiui.op import uv_padding, safe_normalize, inverse_sigmoid
from kiui.cam import orbit_camera, get_perspective
from kiui.nn import MLP, trunc_exp
from kiui.gridencoder import GridEncoder
def get_rays(pose, h, w, fovy, opengl=True):
x, y = torch.meshgrid(
torch.arange(w, device=pose.device),
torch.arange(h, device=pose.device),
indexing="xy",
)
x = x.flatten()
y = y.flatten()
cx = w * 0.5
cy = h * 0.5
focal = h * 0.5 / np.tan(0.5 * np.deg2rad(fovy))
camera_dirs = F.pad(
torch.stack(
[
(x - cx + 0.5) / focal,
(y - cy + 0.5) / focal * (-1.0 if opengl else 1.0),
],
dim=-1,
),
(0, 1),
value=(-1.0 if opengl else 1.0),
) # [hw, 3]
rays_d = camera_dirs @ pose[:3, :3].transpose(0, 1) # [hw, 3]
rays_o = pose[:3, 3].unsqueeze(0).expand_as(rays_d) # [hw, 3]
rays_d = safe_normalize(rays_d)
return rays_o, rays_d
# Triple renderer of gaussians, gaussian, and diso mesh.
# gaussian --> nerf --> mesh
class Converter(nn.Module):
def __init__(self, opt: Options):
super().__init__()
self.opt = opt
self.device = torch.device("cuda")
# gs renderer
self.tan_half_fov = np.tan(0.5 * np.deg2rad(opt.fovy))
self.proj_matrix = torch.zeros(4, 4, dtype=torch.float32, device=self.device)
self.proj_matrix[0, 0] = 1 / self.tan_half_fov
self.proj_matrix[1, 1] = 1 / self.tan_half_fov
self.proj_matrix[2, 2] = (opt.zfar + opt.znear) / (opt.zfar - opt.znear)
self.proj_matrix[3, 2] = - (opt.zfar * opt.znear) / (opt.zfar - opt.znear)
self.proj_matrix[2, 3] = 1
self.gs_renderer = GaussianRenderer(opt)
self.gaussians = self.gs_renderer.load_ply(opt.test_path).to(self.device)
# nerf renderer
if not self.opt.force_cuda_rast:
self.glctx = dr.RasterizeGLContext()
else:
self.glctx = dr.RasterizeCudaContext()
self.step = 0
self.render_step_size = 5e-3
self.aabb = torch.tensor([-1.0, -1.0, -1.0, 1.0, 1.0, 1.0], device=self.device)
self.estimator = nerfacc.OccGridEstimator(roi_aabb=self.aabb, resolution=64, levels=1)
self.encoder_density = GridEncoder(num_levels=12) # VMEncoder(output_dim=16, mode='sum')
self.encoder = GridEncoder(num_levels=12)
self.mlp_density = MLP(self.encoder_density.output_dim, 1, 32, 2, bias=False)
self.mlp = MLP(self.encoder.output_dim, 3, 32, 2, bias=False)
# mesh renderer
self.proj = torch.from_numpy(get_perspective(self.opt.fovy)).float().to(self.device)
self.v = self.f = None
self.vt = self.ft = None
self.deform = None
self.albedo = None
@torch.no_grad()
def render_gs(self, pose):
cam_poses = torch.from_numpy(pose).unsqueeze(0).to(self.device)
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
# cameras needed by gaussian rasterizer
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
cam_view_proj = cam_view @ self.proj_matrix # [V, 4, 4]
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
out = self.gs_renderer.render(self.gaussians.unsqueeze(0), cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0))
image = out['image'].squeeze(1).squeeze(0) # [C, H, W]
alpha = out['alpha'].squeeze(2).squeeze(1).squeeze(0) # [H, W]
return image, alpha
def get_density(self, xs):
# xs: [..., 3]
prefix = xs.shape[:-1]
xs = xs.view(-1, 3)
feats = self.encoder_density(xs)
density = trunc_exp(self.mlp_density(feats))
density = density.view(*prefix, 1)
return density
def render_nerf(self, pose):
pose = torch.from_numpy(pose.astype(np.float32)).to(self.device)
# get rays
resolution = self.opt.output_size
rays_o, rays_d = get_rays(pose, resolution, resolution, self.opt.fovy)
# update occ grid
if self.training:
def occ_eval_fn(xs):
sigmas = self.get_density(xs)
return self.render_step_size * sigmas
self.estimator.update_every_n_steps(self.step, occ_eval_fn=occ_eval_fn, occ_thre=0.01, n=8)
self.step += 1
# render
def sigma_fn(t_starts, t_ends, ray_indices):
t_origins = rays_o[ray_indices]
t_dirs = rays_d[ray_indices]
xs = t_origins + t_dirs * (t_starts + t_ends)[:, None] / 2.0
sigmas = self.get_density(xs)
return sigmas.squeeze(-1)
with torch.no_grad():
ray_indices, t_starts, t_ends = self.estimator.sampling(
rays_o,
rays_d,
sigma_fn=sigma_fn,
near_plane=0.01,
far_plane=100,
render_step_size=self.render_step_size,
stratified=self.training,
cone_angle=0,
)
t_origins = rays_o[ray_indices]
t_dirs = rays_d[ray_indices]
xs = t_origins + t_dirs * (t_starts + t_ends)[:, None] / 2.0
sigmas = self.get_density(xs).squeeze(-1)
rgbs = torch.sigmoid(self.mlp(self.encoder(xs)))
n_rays=rays_o.shape[0]
weights, trans, alphas = nerfacc.render_weight_from_density(t_starts, t_ends, sigmas, ray_indices=ray_indices, n_rays=n_rays)
color = nerfacc.accumulate_along_rays(weights, values=rgbs, ray_indices=ray_indices, n_rays=n_rays)
alpha = nerfacc.accumulate_along_rays(weights, values=None, ray_indices=ray_indices, n_rays=n_rays)
color = color + 1 * (1.0 - alpha)
color = color.view(resolution, resolution, 3).clamp(0, 1).permute(2, 0, 1).contiguous()
alpha = alpha.view(resolution, resolution).clamp(0, 1).contiguous()
return color, alpha
def fit_nerf(self, iters=512, resolution=128):
self.opt.output_size = resolution
optimizer = torch.optim.Adam([
{'params': self.encoder_density.parameters(), 'lr': 1e-2},
{'params': self.encoder.parameters(), 'lr': 1e-2},
{'params': self.mlp_density.parameters(), 'lr': 1e-3},
{'params': self.mlp.parameters(), 'lr': 1e-3},
])
print(f"[INFO] fitting nerf...")
pbar = tqdm.trange(iters)
for i in pbar:
ver = np.random.randint(-45, 45)
hor = np.random.randint(-180, 180)
rad = np.random.uniform(1.5, 3.0)
pose = orbit_camera(ver, hor, rad)
image_gt, alpha_gt = self.render_gs(pose)
image_pred, alpha_pred = self.render_nerf(pose)
# if i % 200 == 0:
# kiui.vis.plot_image(image_gt, alpha_gt, image_pred, alpha_pred)
loss_mse = F.mse_loss(image_pred, image_gt) + 0.1 * F.mse_loss(alpha_pred, alpha_gt)
loss = loss_mse #+ 0.1 * self.encoder_density.tv_loss() #+ 0.0001 * self.encoder_density.density_loss()
loss.backward()
self.encoder_density.grad_total_variation(1e-8)
optimizer.step()
optimizer.zero_grad()
pbar.set_description(f"MSE = {loss_mse.item():.6f}")
print(f"[INFO] finished fitting nerf!")
def render_mesh(self, pose):
h = w = self.opt.output_size
v = self.v + self.deform
f = self.f
pose = torch.from_numpy(pose.astype(np.float32)).to(v.device)
# get v_clip and render rgb
v_cam = torch.matmul(F.pad(v, pad=(0, 1), mode='constant', value=1.0), torch.inverse(pose).T).float().unsqueeze(0)
v_clip = v_cam @ self.proj.T
rast, rast_db = dr.rasterize(self.glctx, v_clip, f, (h, w))
alpha = torch.clamp(rast[..., -1:], 0, 1).contiguous() # [1, H, W, 1]
alpha = dr.antialias(alpha, rast, v_clip, f).clamp(0, 1).squeeze(-1).squeeze(0) # [H, W] important to enable gradients!
if self.albedo is None:
xyzs, _ = dr.interpolate(v.unsqueeze(0), rast, f) # [1, H, W, 3]
xyzs = xyzs.view(-1, 3)
mask = (alpha > 0).view(-1)
image = torch.zeros_like(xyzs, dtype=torch.float32)
if mask.any():
masked_albedo = torch.sigmoid(self.mlp(self.encoder(xyzs[mask].detach(), bound=1)))
image[mask] = masked_albedo.float()
else:
texc, texc_db = dr.interpolate(self.vt.unsqueeze(0), rast, self.ft, rast_db=rast_db, diff_attrs='all')
image = torch.sigmoid(dr.texture(self.albedo.unsqueeze(0), texc, uv_da=texc_db)) # [1, H, W, 3]
image = image.view(1, h, w, 3)
# image = dr.antialias(image, rast, v_clip, f).clamp(0, 1)
image = image.squeeze(0).permute(2, 0, 1).contiguous() # [3, H, W]
image = alpha * image + (1 - alpha)
return image, alpha
def fit_mesh(self, iters=2048, resolution=512, decimate_target=5e4):
self.opt.output_size = resolution
# init mesh from nerf
grid_size = 256
sigmas = np.zeros([grid_size, grid_size, grid_size], dtype=np.float32)
S = 128
density_thresh = 10
X = torch.linspace(-1, 1, grid_size).split(S)
Y = torch.linspace(-1, 1, grid_size).split(S)
Z = torch.linspace(-1, 1, grid_size).split(S)
for xi, xs in enumerate(X):
for yi, ys in enumerate(Y):
for zi, zs in enumerate(Z):
xx, yy, zz = torch.meshgrid(xs, ys, zs, indexing='ij')
pts = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1) # [S, 3]
val = self.get_density(pts.to(self.device))
sigmas[xi * S: xi * S + len(xs), yi * S: yi * S + len(ys), zi * S: zi * S + len(zs)] = val.reshape(len(xs), len(ys), len(zs)).detach().cpu().numpy() # [S, 1] --> [x, y, z]
print(f'[INFO] marching cubes thresh: {density_thresh} ({sigmas.min()} ~ {sigmas.max()})')
vertices, triangles = mcubes.marching_cubes(sigmas, density_thresh)
vertices = vertices / (grid_size - 1.0) * 2 - 1
# clean
vertices = vertices.astype(np.float32)
triangles = triangles.astype(np.int32)
vertices, triangles = clean_mesh(vertices, triangles, remesh=True, remesh_size=0.01)
if triangles.shape[0] > decimate_target:
vertices, triangles = decimate_mesh(vertices, triangles, decimate_target, optimalplacement=False)
self.v = torch.from_numpy(vertices).contiguous().float().to(self.device)
self.f = torch.from_numpy(triangles).contiguous().int().to(self.device)
self.deform = nn.Parameter(torch.zeros_like(self.v)).to(self.device)
# fit mesh from gs
lr_factor = 1
optimizer = torch.optim.Adam([
{'params': self.encoder.parameters(), 'lr': 1e-3 * lr_factor},
{'params': self.mlp.parameters(), 'lr': 1e-3 * lr_factor},
{'params': self.deform, 'lr': 1e-4},
])
print(f"[INFO] fitting mesh...")
pbar = tqdm.trange(iters)
for i in pbar:
ver = np.random.randint(-10, 10)
hor = np.random.randint(-180, 180)
rad = self.opt.cam_radius # np.random.uniform(1, 2)
pose = orbit_camera(ver, hor, rad)
image_gt, alpha_gt = self.render_gs(pose)
image_pred, alpha_pred = self.render_mesh(pose)
loss_mse = F.mse_loss(image_pred, image_gt) + 0.1 * F.mse_loss(alpha_pred, alpha_gt)
# loss_lap = laplacian_smooth_loss(self.v + self.deform, self.f)
loss_normal = normal_consistency(self.v + self.deform, self.f)
loss_offsets = (self.deform ** 2).sum(-1).mean()
loss = loss_mse + 0.001 * loss_normal + 0.1 * loss_offsets
loss.backward()
optimizer.step()
optimizer.zero_grad()
# remesh periodically
if i > 0 and i % 512 == 0:
vertices = (self.v + self.deform).detach().cpu().numpy()
triangles = self.f.detach().cpu().numpy()
vertices, triangles = clean_mesh(vertices, triangles, remesh=True, remesh_size=0.01)
if triangles.shape[0] > decimate_target:
vertices, triangles = decimate_mesh(vertices, triangles, decimate_target, optimalplacement=False)
self.v = torch.from_numpy(vertices).contiguous().float().to(self.device)
self.f = torch.from_numpy(triangles).contiguous().int().to(self.device)
self.deform = nn.Parameter(torch.zeros_like(self.v)).to(self.device)
lr_factor *= 0.5
optimizer = torch.optim.Adam([
{'params': self.encoder.parameters(), 'lr': 1e-3 * lr_factor},
{'params': self.mlp.parameters(), 'lr': 1e-3 * lr_factor},
{'params': self.deform, 'lr': 1e-4},
])
pbar.set_description(f"MSE = {loss_mse.item():.6f}")
# last clean
vertices = (self.v + self.deform).detach().cpu().numpy()
triangles = self.f.detach().cpu().numpy()
vertices, triangles = clean_mesh(vertices, triangles, remesh=False)
self.v = torch.from_numpy(vertices).contiguous().float().to(self.device)
self.f = torch.from_numpy(triangles).contiguous().int().to(self.device)
self.deform = nn.Parameter(torch.zeros_like(self.v).to(self.device))
print(f"[INFO] finished fitting mesh!")
# uv mesh refine
def fit_mesh_uv(self, iters=512, resolution=512, texture_resolution=1024, padding=2):
self.opt.output_size = resolution
# unwrap uv
print(f"[INFO] uv unwrapping...")
mesh = Mesh(v=self.v, f=self.f, albedo=None, device=self.device)
mesh.auto_normal()
mesh.auto_uv()
self.vt = mesh.vt
self.ft = mesh.ft
# render uv maps
h = w = texture_resolution
uv = mesh.vt * 2.0 - 1.0 # uvs to range [-1, 1]
uv = torch.cat((uv, torch.zeros_like(uv[..., :1]), torch.ones_like(uv[..., :1])), dim=-1) # [N, 4]
rast, _ = dr.rasterize(self.glctx, uv.unsqueeze(0), mesh.ft, (h, w)) # [1, h, w, 4]
xyzs, _ = dr.interpolate(mesh.v.unsqueeze(0), rast, mesh.f) # [1, h, w, 3]
mask, _ = dr.interpolate(torch.ones_like(mesh.v[:, :1]).unsqueeze(0), rast, mesh.f) # [1, h, w, 1]
# masked query
xyzs = xyzs.view(-1, 3)
mask = (mask > 0).view(-1)
albedo = torch.zeros(h * w, 3, device=self.device, dtype=torch.float32)
if mask.any():
print(f"[INFO] querying texture...")
xyzs = xyzs[mask] # [M, 3]
# batched inference to avoid OOM
batch = []
head = 0
while head < xyzs.shape[0]:
tail = min(head + 640000, xyzs.shape[0])
batch.append(torch.sigmoid(self.mlp(self.encoder(xyzs[head:tail]))).float())
head += 640000
albedo[mask] = torch.cat(batch, dim=0)
albedo = albedo.view(h, w, -1)
mask = mask.view(h, w)
albedo = uv_padding(albedo, mask, padding)
# optimize texture
self.albedo = nn.Parameter(inverse_sigmoid(albedo)).to(self.device)
optimizer = torch.optim.Adam([
{'params': self.albedo, 'lr': 1e-3},
])
print(f"[INFO] fitting mesh texture...")
pbar = tqdm.trange(iters)
for i in pbar:
# shrink to front view as we care more about it...
ver = np.random.randint(-5, 5)
hor = np.random.randint(-15, 15)
rad = self.opt.cam_radius # np.random.uniform(1, 2)
pose = orbit_camera(ver, hor, rad)
image_gt, alpha_gt = self.render_gs(pose)
image_pred, alpha_pred = self.render_mesh(pose)
loss_mse = F.mse_loss(image_pred, image_gt)
loss = loss_mse
loss.backward()
optimizer.step()
optimizer.zero_grad()
pbar.set_description(f"MSE = {loss_mse.item():.6f}")
print(f"[INFO] finished fitting mesh texture!")
@torch.no_grad()
def export_mesh(self, path):
mesh = Mesh(v=self.v, f=self.f, vt=self.vt, ft=self.ft, albedo=torch.sigmoid(self.albedo), device=self.device)
mesh.auto_normal()
mesh.write(path)
opt = tyro.cli(AllConfigs)
# load a saved ply and convert to mesh
assert opt.test_path.endswith('.ply'), '--test_path must be a .ply file saved by infer.py'
converter = Converter(opt).cuda()
converter.fit_nerf()
converter.fit_mesh()
converter.fit_mesh_uv()
converter.export_mesh(opt.test_path.replace('.ply', '.glb'))