forked from ius/rsatool
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrsatool.py
executable file
·183 lines (136 loc) · 4.91 KB
/
rsatool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#!/usr/bin/env python3
import base64
import fractions
import argparse
import random
import sys
try:
import gmpy
except ImportError as e:
try:
import gmpy2 as gmpy
except ImportError:
raise e
from pyasn1.codec.der import encoder
from pyasn1.type.univ import Sequence, Integer
PEM_TEMPLATE = b'-----BEGIN RSA PRIVATE KEY-----\n%s-----END RSA PRIVATE KEY-----\n'
DEFAULT_EXP = 65537
def factor_modulus(n, d, e):
"""
Efficiently recover non-trivial factors of n
See: Handbook of Applied Cryptography
8.2.2 Security of RSA -> (i) Relation to factoring (p.287)
http://www.cacr.math.uwaterloo.ca/hac/
"""
t = (e * d - 1)
s = 0
while True:
quotient, remainder = divmod(t, 2)
if remainder != 0:
break
s += 1
t = quotient
found = False
while not found:
i = 1
a = random.randint(1, n-1)
while i <= s and not found:
c1 = pow(a, pow(2, i-1, n) * t, n)
c2 = pow(a, pow(2, i, n) * t, n)
found = c1 != 1 and c1 != (-1 % n) and c2 == 1
i += 1
p = fractions.gcd(c1-1, n)
q = n // p
return p, q
class RSA:
def __init__(self, p=None, q=None, n=None, d=None, e=DEFAULT_EXP):
"""
Initialize RSA instance using primes (p, q)
or modulus and private exponent (n, d)
"""
self.e = e
if p and q:
assert gmpy.is_prime(p), 'p is not prime'
assert gmpy.is_prime(q), 'q is not prime'
self.p = p
self.q = q
elif n and d:
self.p, self.q = factor_modulus(n, d, e)
else:
raise ArgumentError('Either (p, q) or (n, d) must be provided')
self._calc_values()
def _calc_values(self):
self.n = self.p * self.q
if self.p != self.q:
phi = (self.p - 1) * (self.q - 1)
else:
phi = (self.p ** 2) - self.p
self.d = gmpy.invert(self.e, phi)
# CRT-RSA precomputation
self.dP = self.d % (self.p - 1)
self.dQ = self.d % (self.q - 1)
self.qInv = gmpy.invert(self.q, self.p)
def to_pem(self):
"""
Return OpenSSL-compatible PEM encoded key
"""
return PEM_TEMPLATE % base64.encodebytes(self.to_der())
def to_der(self):
"""
Return parameters as OpenSSL compatible DER encoded key
"""
seq = Sequence()
for idx, x in enumerate([0, self.n, self.e, self.d, self.p, self.q, self.dP, self.dQ, self.qInv]):
seq.setComponentByPosition(idx, Integer(x))
return encoder.encode(seq)
def dump(self, verbose):
vars = ['n', 'e', 'd', 'p', 'q']
if verbose:
vars += ['dP', 'dQ', 'qInv']
for v in vars:
self._dumpvar(v)
def _dumpvar(self, var):
val = getattr(self, var)
def parts(s, l): return '\n'.join(
[s[i:i+l] for i in range(0, len(s), l)])
if len(str(val)) <= 40:
print('%s = %d (%#x)\n' % (var, val, val))
else:
print('%s =' % var)
print(parts('%x' % val, 80) + '\n')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-n', help='modulus. format : int or 0xhex', type=lambda x: int(x, 0))
parser.add_argument('-p', help='first prime number. format : int or 0xhex', type=lambda x: int(x, 0))
parser.add_argument('-q', help='second prime number. format : int or 0xhex', type=lambda x: int(x, 0))
parser.add_argument('-d', help='private exponent. format : int or 0xhex',
type=lambda x: int(x, 0))
parser.add_argument('-e', help='public exponent (default: %d). format : int or 0xhex' %
DEFAULT_EXP, default=DEFAULT_EXP, type=lambda x: int(x, 0))
parser.add_argument('-o', '--output', help='output filename')
parser.add_argument('-f', '--format', help='output format (DER, PEM) (default: PEM)',
choices=['DER', 'PEM'], default='PEM')
parser.add_argument('-v', '--verbose', help='also display CRT-RSA representation',
action='store_true', default=False)
args = parser.parse_args()
if args.p and args.q:
print('Using (p, q) to initialise RSA instance\n')
rsa = RSA(p=args.p, q=args.q, e=args.e)
elif args.n and args.d:
print('Using (n, d) to initialise RSA instance\n')
rsa = RSA(n=args.n, d=args.d, e=args.e)
else:
parser.print_help()
parser.error('Either (p, q) or (n, d) needs to be specified')
rsa.dump(args.verbose)
if args.format == 'PEM':
data = rsa.to_pem()
elif args.format == 'DER':
data = rsa.to_der()
if args.output:
print('Saving %s as %s' % (args.format, args.output))
fp = open(args.output, 'wb')
fp.write(data)
fp.close()
else:
sys.stdout.buffer.write(data)