-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsupervised.py
204 lines (161 loc) · 7.18 KB
/
supervised.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
"""
Trains a supervised neural network using the encoder structure of netAE with
70% data. Represents the empirical upper bound accuracy.
@author: Leo Zhengyang Dong
@contact: leozdong@stanford.edu
@date: 10/16/2019
"""
#### Setup ####
import numpy as np
import torch
import torch.optim as optim
from sklearn.metrics import accuracy_score
import argparse
from nn_struct import NN_sup
# define device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("device:", device)
#### Argument parser ####
parser = argparse.ArgumentParser(description="Trains a supervised neural network using the encoder structure of netAE.")
parser.add_argument("--use-floyd", action="store_true", default=False, help="use floydhub to train")
parser.add_argument("-ds", "--dataset", default="cortex", help="name of the dataset (default: cortex)")
parser.add_argument("-spath", "--save-path", default="output", help="path to output directory")
parser.add_argument("-mpath", "--model-path", default="/Users/Leo/Research/2. Gene Expression Feature Learning/4. Modeling/Main/trained_models", help="path to trained models")
parser.add_argument("-ld", "--load-trained", action="store_true", default=False, help="load a trained model instead of training a new model")
parser.add_argument("-s", "--seed", type=int, default=0, help="random seed for loading dataset (default: 0)")
parser.add_argument("-lratio", "--lab-ratio", type=float, default=0.7, help="labeled set ratio for each cell type (default: 0.7)")
args = parser.parse_args()
# make sure saving path exists
import os
if not os.path.exists(args.save_path):
os.makedirs(args.save_path)
def train_sup(data, labels):
"""
Trains a supervised neural network.
Parameters
----------
data : tensor (n_samples, n_features)
labels : list
Returns
-------
trained_nn : model state_dict
"""
# roughly define hyperparameters
lr = 1e-5
z_dim = 50
epochs = 150
early_stop = 50
batch_size = 100
print("training supervised nn...")
print("params: {{lr: {}, z_dim: {}, epochs: {}, early_stop: {}, batch_size: {}}}".format(lr, z_dim, epochs, early_stop, batch_size))
#### Define network structure ####
input_dim = data.size()[1]
n_classes = len(set(labels))
nn = NN_sup(z_dim, input_dim, n_classes)
print(nn)
# put data and model into device
nn = nn.to(device)
data = data.to(device)
# Note: labels will be wrapped into tensors when split into train and val, and the new tensors will be put into device when created.
# create optimizer
optimizer = optim.Adam(nn.parameters(), lr=lr)
optimizer.zero_grad()
# save best performing model
best_model_state_dict = None
best_epoch = 0
best_loss = float("inf")
#### Process data for training ####
# split into train and val
from helper import split_train_val
train_data, train_labels, val_data, val_labels = split_train_val(data, labels=labels, train_ratio=0.8)
# wrap training data into pytorch Dataset object for batching
from data import Dataset
from torch.utils.data import DataLoader
train_dataloader = DataLoader(Dataset(train_data, labels=train_labels), batch_size=batch_size, shuffle=True)
for epoch in range(epochs):
print("epoch", epoch)
# initialize training metrics
train_loss, train_acc = 0, 0
# useful for averaging and logging training metrics later
nbatches = int(train_data.size()[0] / batch_size) + 1
nbatches_left = nbatches
#### Training phase ####
nn.train()
for x, y in train_dataloader:
nbatches_left -= 1
# calculate loss
loss, acc = nn.calc_losses(x, y)
# update training metric
train_loss += loss.cpu().detach().numpy()
train_acc += acc.cpu().detach().numpy()
if nbatches_left == 0:
# average over all nbatches
train_loss /= nbatches
train_acc /= nbatches
# print training logs
print('{{"metric": "Train loss", "value": {}, "epoch": {}}}'.format(train_loss, epoch))
print('{{"metric": "Train acc", "value": {}, "epoch": {}}}'.format(train_acc, epoch))
optimizer.zero_grad()
loss.backward()
optimizer.step()
#### Validation phase ####
with torch.no_grad():
nn.eval()
# calculate validation metrics
val_loss, val_acc = nn.calc_losses(val_data, val_labels)
# print validation logs
print('{{"metric": "Val loss", "value": {}, "epoch": {}}}'.format(val_loss, epoch))
print('{{"metric": "Val acc", "value": {}, "epoch": {}}}'.format(val_acc, epoch))
# update best performance
if val_loss < best_loss:
best_loss = val_loss
best_epoch = epoch
best_model_state_dict = nn.state_dict()
print("Saving new best model at epoch {}".format(epoch))
torch.save(best_model_state_dict, args.save_path + "/supervised_trained_{}_{}".format(args.dataset, args.seed))
if epoch - best_epoch > early_stop:
print("early stopping reached at: {}".format(epoch))
break
print("training finished")
print("best epoch: {}".format(best_epoch))
return best_model_state_dict
def sup_infer(train_data, train_labels, test_data, test_labels):
# initialize nn_trained
nn_trained = NN_sup(50, train_data.size()[1], len(set(train_labels)))
nn_trained.eval()
# load state_dict
if args.load_trained:
print("load trained model...")
state_dict = torch.load(args.model_path + "/supervised_trained_{}_{}".format(args.dataset, args.seed), map_location=device)
else:
print("train new model...")
state_dict = train_sup(train_data, train_labels)
nn_trained.load_state_dict(state_dict)
# predict training labels
train_labels = torch.tensor(train_labels, dtype=torch.long)
train_pred = torch.max(nn_trained(train_data), dim=1)[1]
train_acc = (train_pred == train_labels).sum().double() / train_labels.size()[0]
print("training acc: {}".format(train_acc))
# predict test labels
test_labels = torch.tensor(test_labels, dtype=torch.long)
test_pred = torch.max(nn_trained(test_data), dim=1)[1]
test_acc = (test_pred == test_labels).sum().double() / test_labels.size()[0]
print("test acc: {}".format(test_acc))
def main():
# load data
if args.use_floyd:
data_path = "/data"
else:
data_path = "/Users/Leo/Research/2. Gene Expression Feature Learning/4. Modeling/Main/{}_data".format(args.dataset)
print("Using dataset: {}".format(args.dataset))
from data import Data
prep_method = "log"
dataset = Data(data_path, labeled_ratio=args.lab_ratio, seed=args.seed, prep_method=prep_method)
data, lab_full, train_idx, test_idx, info = dataset.load_all()
train_data = torch.tensor(data[train_idx, :], dtype=torch.float)
train_labels = lab_full[train_idx]
test_data = torch.tensor(data[test_idx, :], dtype=torch.float)
test_labels = lab_full[test_idx]
sup_infer(train_data, train_labels, test_data, test_labels)
if __name__ == "__main__":
main()