Skip to content

Continuous-Time Link Prediction via Temporal Dependent Graph Neural Network

License

Notifications You must be signed in to change notification settings

Leo-Q-316/TDGNN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TDGNN:Continuous-Time Link Prediction via Temporal Dependent Graph Neural Network

This is our Pytorch implementation for the paper:

Liang Qu, Huaisheng Zhu, Qiqi Duan, and Yuhui Shi. 2020. Continuous-Time Link Prediction via Temporal Dependent Graph Neural Network. In Proceedings of The Web Conference 2020 (WWW '20). Association for Computing Machinery, New York, NY, USA, 3026–3032. DOI:https://doi.org/10.1145/3366423.3380073

Introduction

Temporal Dependent Graph Neural Network (TDGNN), a simple yet effective dynamic network representation learning framework which incorporates the network temporal information into GNNs. TDGNN introduces a novel Temporal Aggregator (TDAgg) to aggregate the neighbor nodes’ features and edges’ temporal information to obtain the target node representations.

Citation

If you want to use our codes in your research, please cite:

@inproceedings{10.1145/3366423.3380073,
author = {Qu, Liang and Zhu, Huaisheng and Duan, Qiqi and Shi, Yuhui},
title = {Continuous-Time Link Prediction via Temporal Dependent Graph Neural Network},
year = {2020},
isbn = {9781450370233},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3366423.3380073},
doi = {10.1145/3366423.3380073},
booktitle = {Proceedings of The Web Conference 2020},
pages = {3026–3032},
numpages = {7},
location = {Taipei, Taiwan},
series = {WWW '20}
}

Usage

python3 model.py -input_node ../contact/feature_random_contact.txt -input_edge_train ../contact/edge_train_contact -input_edge_test ../contact/edge_train_contact -output_file result -aggregate_function origin -hidden_dimension 128

About

Continuous-Time Link Prediction via Temporal Dependent Graph Neural Network

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages