-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolov5m.yaml
executable file
·45 lines (39 loc) · 2.44 KB
/
yolov5m.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# parameters
nc: 3 # number of classes
depth_multiple: 0.67 # model depth multiple
width_multiple: 0.75 # layer channel multiple
# anchors
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
# yolov5 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Focus, [64, 3]], # 1-P1/2 #torch.Size([1, 48, 320, 320])
[-1, 1, Conv, [128, 3, 2]], # 2-P2/4 #torch.Size([1, 96, 160, 160])
[-1, 3, Bottleneck, [128]], #torch.Size([1, 96, 160, 160])
[-1, 1, Conv, [256, 3, 2]], # 4-P3/8 #torch.Size([1, 192, 80, 80])
[-1, 9, BottleneckCSP, [256]], #torch.Size([1, 192, 80, 80])
[-1, 1, Conv, [512, 3, 2]], # 6-P4/16 #torch.Size([1, 384, 40, 40])
[-1, 9, BottleneckCSP, [512]], #torch.Size([1, 384, 40, 40])
[-1, 1, Conv, [1024, 3, 2]], # 8-P5/32 #torch.Size([1, 768, 20, 20])
[-1, 1, SPP, [1024, [5, 9, 13]]], #torch.Size([1, 768, 20, 20])
[-1, 6, BottleneckCSP, [1024]], # 10 #torch.Size([1, 768, 20, 20])
]
# yolov5 head
head:
[[-1, 3, BottleneckCSP, [1024, False]], # 11 #torch.Size([1, 768, 20, 20])
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 12 (P5/32-large) #torch.Size([1, 24, 20, 20])
[-2, 1, nn.Upsample, [None, 2, 'nearest']], #torch.Size([1, 768, 40, 40])
[[-1, 6], 1, Concat, [1]], # cat backbone P4 #torch.Size([1, 1152, 40, 40])
[-1, 1, Conv, [512, 1, 1]], #torch.Size([1, 384, 40, 40])
[-1, 3, BottleneckCSP, [512, False]], #torch.Size([1, 384, 40, 40])
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 17 (P4/16-medium) #torch.Size([1, 24, 40, 40])
[-2, 1, nn.Upsample, [None, 2, 'nearest']], #torch.Size([1, 384, 80, 80])
[[-1, 4], 1, Concat, [1]], # cat backbone P3 #torch.Size([1, 576, 80, 80])
[-1, 1, Conv, [256, 1, 1]], #torch.Size([1, 192, 80, 80])
[-1, 3, BottleneckCSP, [256, False]], #torch.Size([1, 192, 80, 80])
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 22 (P3/8-small) #torch.Size([1, 24, 80, 80])
[[], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) #torch.Size([1, 25200, 8])
]