-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_structure.txt
521 lines (514 loc) · 24.3 KB
/
model_structure.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
Model(
(model): Sequential(
(0): Focus(
(conv): Conv(
(conv): Conv2d(12, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(48, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
)
(1): Conv(
(conv): Conv2d(48, 96, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn): BatchNorm2d(96, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(2): Sequential(
(0): Bottleneck(
(cv1): Conv(
(conv): Conv2d(96, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(48, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(cv2): Conv(
(conv): Conv2d(48, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(96, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
)
(1): Bottleneck(
(cv1): Conv(
(conv): Conv2d(96, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(48, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(cv2): Conv(
(conv): Conv2d(48, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(96, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
)
)
(3): Conv(
(conv): Conv2d(96, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(4): BottleneckCSP(
(cv1): Conv(
(conv): Conv2d(192, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(96, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(cv2): Conv2d(192, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
(cv3): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
(cv4): Conv(
(conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(bn): BatchNorm2d(192, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
(m): Sequential(
(0): Bottleneck(
(cv1): Conv(
(conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(96, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(cv2): Conv(
(conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(96, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
)
(1): Bottleneck(
(cv1): Conv(
(conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(96, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(cv2): Conv(
(conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(96, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
)
(2): Bottleneck(
(cv1): Conv(
(conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(96, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(cv2): Conv(
(conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(96, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
)
(3): Bottleneck(
(cv1): Conv(
(conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(96, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(cv2): Conv(
(conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(96, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
)
(4): Bottleneck(
(cv1): Conv(
(conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(96, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(cv2): Conv(
(conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(96, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
)
(5): Bottleneck(
(cv1): Conv(
(conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(96, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(cv2): Conv(
(conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(96, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
)
)
)
(5): Conv(
(conv): Conv2d(192, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn): BatchNorm2d(384, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(6): BottleneckCSP(
(cv1): Conv(
(conv): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(cv2): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(cv3): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(cv4): Conv(
(conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(384, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(bn): BatchNorm2d(384, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
(m): Sequential(
(0): Bottleneck(
(cv1): Conv(
(conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(cv2): Conv(
(conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
)
(1): Bottleneck(
(cv1): Conv(
(conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(cv2): Conv(
(conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
)
(2): Bottleneck(
(cv1): Conv(
(conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(cv2): Conv(
(conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
)
(3): Bottleneck(
(cv1): Conv(
(conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(cv2): Conv(
(conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
)
(4): Bottleneck(
(cv1): Conv(
(conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(cv2): Conv(
(conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
)
(5): Bottleneck(
(cv1): Conv(
(conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(cv2): Conv(
(conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
)
)
)
(7): Conv(
(conv): Conv2d(384, 768, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn): BatchNorm2d(768, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(8): SPP(
(cv1): Conv(
(conv): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(384, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(cv2): Conv(
(conv): Conv2d(1536, 768, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(768, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(m): ModuleList(
(0): MaxPool2d(kernel_size=5, stride=1, padding=2, dilation=1, ceil_mode=False)
(1): MaxPool2d(kernel_size=9, stride=1, padding=4, dilation=1, ceil_mode=False)
(2): MaxPool2d(kernel_size=13, stride=1, padding=6, dilation=1, ceil_mode=False)
)
)
(9): BottleneckCSP(
(cv1): Conv(
(conv): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(384, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(cv2): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(cv3): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(cv4): Conv(
(conv): Conv2d(768, 768, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(768, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(bn): BatchNorm2d(768, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
(m): Sequential(
(0): Bottleneck(
(cv1): Conv(
(conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(384, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(cv2): Conv(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(384, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
)
(1): Bottleneck(
(cv1): Conv(
(conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(384, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(cv2): Conv(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(384, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
)
(2): Bottleneck(
(cv1): Conv(
(conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(384, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(cv2): Conv(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(384, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
)
(3): Bottleneck(
(cv1): Conv(
(conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(384, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(cv2): Conv(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(384, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
)
)
)
(10): BottleneckCSP(
(cv1): Conv(
(conv): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(384, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(cv2): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(cv3): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(cv4): Conv(
(conv): Conv2d(768, 768, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(768, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(bn): BatchNorm2d(768, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
(m): Sequential(
(0): Bottleneck(
(cv1): Conv(
(conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(384, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(cv2): Conv(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(384, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
)
(1): Bottleneck(
(cv1): Conv(
(conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(384, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(cv2): Conv(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(384, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
)
)
)
(11): Conv2d(768, 24, kernel_size=(1, 1), stride=(1, 1))
(12): Upsample(scale_factor=2.0, mode='nearest')
(13): Concat()
(14): Conv(
(conv): Conv2d(1152, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(384, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(15): BottleneckCSP(
(cv1): Conv(
(conv): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(cv2): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(cv3): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(cv4): Conv(
(conv): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(384, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(bn): BatchNorm2d(384, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
(m): Sequential(
(0): Bottleneck(
(cv1): Conv(
(conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(cv2): Conv(
(conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
)
(1): Bottleneck(
(cv1): Conv(
(conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(cv2): Conv(
(conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
)
)
)
(16): Conv2d(384, 24, kernel_size=(1, 1), stride=(1, 1))
(17): Upsample(scale_factor=2.0, mode='nearest')
(18): Concat()
(19): Conv(
(conv): Conv2d(576, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(20): BottleneckCSP(
(cv1): Conv(
(conv): Conv2d(192, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(96, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(cv2): Conv2d(192, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
(cv3): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
(cv4): Conv(
(conv): Conv2d(192, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(192, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(bn): BatchNorm2d(192, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
(m): Sequential(
(0): Bottleneck(
(cv1): Conv(
(conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(96, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(cv2): Conv(
(conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(96, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
)
(1): Bottleneck(
(cv1): Conv(
(conv): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(96, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
(cv2): Conv(
(conv): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(96, eps=0.0001, momentum=0.03, affine=True, track_running_stats=True)
(act): LeakyReLU(negative_slope=0.1, inplace=True)
)
)
)
)
(21): Conv2d(192, 24, kernel_size=(1, 1), stride=(1, 1))
(22): Detect()
)
)
[[-1, 1, Focus, [64, 3]], # 1-P1/2
[-1, 1, Conv, [128, 3, 2]], # 2-P2/4
[-1, 3, Bottleneck, [128]],
[-1, 1, Conv, [256, 3, 2]], # 4-P3/8
[-1, 9, BottleneckCSP, [256]],
[-1, 1, Conv, [512, 3, 2]], # 6-P4/16
[-1, 9, BottleneckCSP, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 8-P5/32
[-1, 1, SPP, [1024, [5, 9, 13]]],
[-1, 6, BottleneckCSP, [1024]], # 10
]
# yolov5 head
head:
[[-1, 3, BottleneckCSP, [1024, False]], # 11
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 12 (P5/32-large)
[-2, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 1, Conv, [512, 1, 1]],
[-1, 3, BottleneckCSP, [512, False]],
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 17 (P4/16-medium)
[-2, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 1, Conv, [256, 1, 1]],
[-1, 3, BottleneckCSP, [256, False]],
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]], # 22 (P3/8-small)
[[], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
torch.Size([1, 48, 320, 320])
torch.Size([1, 96, 160, 160])
torch.Size([1, 96, 160, 160])
torch.Size([1, 192, 80, 80])
torch.Size([1, 192, 80, 80])
torch.Size([1, 384, 40, 40])
torch.Size([1, 384, 40, 40])
torch.Size([1, 768, 20, 20])
torch.Size([1, 768, 20, 20])
torch.Size([1, 768, 20, 20])
torch.Size([1, 768, 20, 20])
torch.Size([1, 24, 20, 20])
torch.Size([1, 768, 40, 40])
torch.Size([1, 1152, 40, 40])
torch.Size([1, 384, 40, 40])
torch.Size([1, 384, 40, 40])
torch.Size([1, 24, 40, 40])
torch.Size([1, 384, 80, 80])
torch.Size([1, 576, 80, 80])
torch.Size([1, 192, 80, 80])
torch.Size([1, 192, 80, 80])
torch.Size([1, 24, 80, 80])
torch.Size([1, 25200, 8])