forked from nox-410/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtensor.h
450 lines (360 loc) · 12.1 KB
/
tensor.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
/***************************************************************************************************
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Defines layout functions used by TensorRef and derived classes for common 4-D and 5-D
tensor formats.
Layout functions map logical coordinates to linear memory. They often require additional
data to describe strides between elements.
Layout functions must implement all members in the public interface of IdentityTensorLayout<>
defined in cutlass/tensor_ref.h.
*/
#pragma once
#if defined(__CUDACC_RTC__)
#include <cuda/std/cassert>
#else
#include "assert.h"
#endif
#include "cutlass/cutlass.h"
#include "cutlass/fast_math.h"
#include "cutlass/layout/matrix.h"
#include "cutlass/coord.h"
#include "cutlass/tensor_coord.h"
namespace cutlass {
namespace layout {
/////////////////////////////////////////////////////////////////////////////////////////////////
//
// Defines data layouts of various tensor formats usable by TensorRef and other classes.
//
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Mapping function for 4-D NHWC tensors.
class TensorNHWC {
public:
/// Logical rank of tensor
static int const kRank = 4;
/// Rank of stride vector
static int const kStrideRank = 3;
/// Index type used for coordinates
using Index = int32_t;
/// Long index type used for offsets
using LongIndex = int64_t;
/// Logical coordinate (n, h, w, c)
using TensorCoord = Tensor4DCoord;
/// Stride vector
using Stride = Coord<kStrideRank>;
private:
//
// Data members
//
/// Stride data member - [c, wc, hwc]
Stride stride_;
public:
//
// Methods
//
/// Constructor
CUTLASS_HOST_DEVICE
TensorNHWC(Stride const &stride = Stride(0)): stride_(stride) { }
/// Constructor
CUTLASS_HOST_DEVICE
TensorNHWC(typename Stride::Index c, typename Stride::Index wc, typename Stride::Index hwc): stride_(make_Coord(c, wc, hwc)) { }
/// Helper returns a layout to a tightly packed NHWC tensor.
CUTLASS_HOST_DEVICE
static TensorNHWC packed(TensorCoord const &extent) {
return TensorNHWC(
make_Coord(
extent.c(),
extent.w() * extent.c(),
extent.h() * extent.w() * extent.c()
)
);
}
/// Returns the offset of a coordinate (n, h, w, c) in linear memory.
CUTLASS_HOST_DEVICE
LongIndex operator()(TensorCoord const &coord) const {
return coord.c() +
LongIndex(stride_[0] * coord.w()) +
LongIndex(stride_[1] * coord.h()) +
LongIndex(stride_[2] * coord.n());
}
/// Returns a RowMajor equivalent for a TensorNHWC layout
CUTLASS_HOST_DEVICE
explicit operator RowMajor() {
return RowMajor(stride_[0]);
}
/// Returns the logical coordinate (n, h, w, c) from a given offset in linear memory.
CUTLASS_HOST_DEVICE
TensorCoord inverse(LongIndex index) const {
int n = 0, h = 0, w = 0, c = 0;
#if defined(__CUDA_ARCH__)
int tmp = 0;
c = int(index % static_cast<int>(stride_[0]));
unsigned int hw_mul, hw_shr, w_mul, w_shr, c_mul, c_shr;
find_divisor(hw_mul, hw_shr, stride_[2]);
find_divisor(w_mul, w_shr, stride_[1]);
find_divisor(c_mul, c_shr, stride_[0]);
fast_divmod(n, tmp, index, int(stride_[2]), hw_mul, hw_shr);
fast_divmod(h, w, tmp, int(stride_[1]), w_mul, w_shr);
fast_divmod(w, tmp, w, int(stride_[0]), c_mul, c_shr);
#else
n = int(index / (stride_[0] * stride_[1] * stride_[2]));
LongIndex residual = index % (stride_[0] * stride_[1] * stride_[2]);
h = int(residual / (stride_[0] * stride_[1]));
residual = (residual % (stride_[0] * stride_[1]));
w = int(residual / stride_[0]);
c = int(residual % stride_[0]);
#endif
return TensorCoord(n, h, w, c);
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride stride() const {
return stride_;
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride & stride() {
return stride_;
}
/// Compute the number of contiguous elements needed to store a tensor with the given size
CUTLASS_HOST_DEVICE
LongIndex capacity(TensorCoord const &extent) const {
// it does not make sense if the extent is larger than stride
// and we could not rely on the capacity calculation in such cases
// we could move this checkers to debug code only
if ((extent.c() > stride_[0])
|| (extent.w() * stride_[0] > stride_[1])
|| (extent.h() * stride_[1] > stride_[2])) {
assert(0);
}
return extent.n() * stride_[2];
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Mapping function for 4-D NCHW tensors.
class TensorNCHW {
public:
/// Logical rank of tensor
static int const kRank = 4;
/// Rank of stride vector
static int const kStrideRank = 3;
/// Index type used for coordinates
using Index = int32_t;
/// Long index type used for offsets
using LongIndex = int64_t;
/// Logical coordinate
using TensorCoord = Tensor4DCoord;
/// Stride vector
using Stride = Coord<kStrideRank>;
private:
//
// Data members
//
/// Stride data member - [c, wc, hwc]
Stride stride_;
public:
//
// Methods
//
/// Constructor
CUTLASS_HOST_DEVICE
TensorNCHW(Stride const &stride = Stride(0)): stride_(stride) { }
/// Helper returns a layout to a tightly packed tensor
CUTLASS_HOST_DEVICE
static TensorNCHW packed(TensorCoord const &extent) {
return TensorNCHW(
make_Coord(
extent.w(),
extent.w() * extent.h(),
extent.h() * extent.w() * extent.c()
)
);
}
/// Returns the offset of a coordinate in linear memory.
CUTLASS_HOST_DEVICE
LongIndex operator()(TensorCoord const &coord) const {
return coord.w() +
LongIndex(stride_[0] * coord.h()) +
LongIndex(stride_[1] * coord.c()) +
LongIndex(stride_[2] * coord.n());
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride stride() const {
return stride_;
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride & stride() {
return stride_;
}
/// Compute the number of contiguous elements needed to store a tensor with the given size
CUTLASS_HOST_DEVICE
LongIndex capacity(TensorCoord const &extent) const {
return extent.n() * stride_[2];
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Mapping function for 4-D NC/xHWx tensors.
template <int Interleave>
class TensorNCxHWx {
public:
/// Interleaving quantity
static int const kInterleave = Interleave;
/// Logical rank of tensor
static int const kRank = 4;
/// Rank of stride vector
static int const kStrideRank = 3;
/// Index type used for coordinates
using Index = int32_t;
/// Long index type used for offsets
using LongIndex = int64_t;
/// Logical coordinate
using TensorCoord = Tensor4DCoord;
/// Stride vector
using Stride = Coord<kStrideRank>;
private:
//
// Data members
//
/// Stride data member - [c, wc, hwc]
Stride stride_;
public:
//
// Methods
//
/// Constructor
CUTLASS_HOST_DEVICE
TensorNCxHWx(Stride const &stride = Stride(0)): stride_(stride) { }
/// Helper returns a layout to a tightly packed tensor
CUTLASS_HOST_DEVICE
static TensorNCxHWx packed(TensorCoord const &extent) {
return TensorNCxHWx(
make_Coord(
kInterleave * extent.w(),
kInterleave * extent.w() * extent.h(),
extent.h() * extent.w() * extent.c()
)
);
}
/// Returns the offset of a coordinate in linear memory.
CUTLASS_HOST_DEVICE
LongIndex operator()(TensorCoord const &coord) const {
Index c_minor = (coord.c() % kInterleave);
Index c_major = (coord.c() / kInterleave);
return c_minor +
LongIndex(kInterleave * coord.w()) +
LongIndex(stride_[0] * coord.h()) +
LongIndex(stride_[1] * c_major) +
LongIndex(stride_[2] * coord.n());
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride stride() const {
return stride_;
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride & stride() {
return stride_;
}
/// Compute the number of contiguous elements needed to store a tensor with the given size
CUTLASS_HOST_DEVICE
LongIndex capacity(TensorCoord const &extent) const {
return extent.n() * stride_[2];
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Mapping function for 4-D CxRSKx tensors.
template <int Interleave>
class TensorCxRSKx {
public:
/// Interleaving quantity
static int const kInterleave = Interleave;
/// Logical rank of tensor
static int const kRank = 4;
/// Rank of stride vector
static int const kStrideRank = 3;
/// Index type used for coordinates
using Index = int32_t;
/// Long index type used for offsets
using LongIndex = int64_t;
/// Logical coordinate
using TensorCoord = Tensor4DCoord;
/// Stride vector
using Stride = Coord<kStrideRank>;
private:
//
// Data members
//
/// Stride data member - [c, wc, hwc]
Stride stride_;
public:
//
// Methods
//
/// Constructor
CUTLASS_HOST_DEVICE
TensorCxRSKx(Stride const &stride = Stride(0)): stride_(stride) { }
/// Helper returns a layout to a tightly packed tensor
CUTLASS_HOST_DEVICE
static TensorCxRSKx packed(TensorCoord const &extent) {
return TensorCxRSKx(
make_Coord(
kInterleave * extent.n(),
kInterleave * extent.n() * extent.w(),
kInterleave * extent.n() * extent.w() * extent.h()
)
);
}
/// Returns the offset of a coordinate in linear memory.
CUTLASS_HOST_DEVICE
LongIndex operator()(TensorCoord const &coord) const {
Index c_minor = (coord.c() % kInterleave);
Index c_major = (coord.c() / kInterleave);
return c_minor +
LongIndex(kInterleave * coord.n()) +
LongIndex(stride_[0] * coord.w()) +
LongIndex(stride_[1] * coord.h()) +
LongIndex(stride_[2] * c_major);
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride stride() const {
return stride_;
}
/// Returns the stride of the layout
CUTLASS_HOST_DEVICE
Stride & stride() {
return stride_;
}
/// Compute the number of contiguous elements needed to store a tensor with the given size
CUTLASS_HOST_DEVICE
LongIndex capacity(TensorCoord const &extent) const {
return (extent.c() / kInterleave * stride_[2]);
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace layout
} // namespace cutlass