code for ACL 2020 paper: FLAT: Chinese NER Using Flat-Lattice Transformer.
Models and results can be found at our ACL 2020 paper FLAT: Chinese NER Using Flat-Lattice Transformer.
Python: 3.7.3
PyTorch: 1.2.0
FastNLP: 0.5.0
Numpy: 1.16.4
you can go here to know more about FastNLP.
-
Download the character embeddings and word embeddings.
Character and Bigram embeddings (gigaword_chn.all.a2b.{'uni' or 'bi'}.ite50.vec) : Google Drive or Baidu Pan
Word(Lattice) embeddings (ctb.50d.vec): Google Drive or Baidu Pan
-
Modify the
paths.py
to add the pretrained embedding and the dataset -
Run following commands
cd V0
python preprocess.py (add '--clip_msra' if you need to train FLAT on MSRA NER dataset)
python flat_main.py --dataset <dataset_name> (ontonotes, msra, weibo or resume)
If you want to run the code on other datasets, you can write a function whose output format is like '' If you want to record experiment result, you can use fitlog:
pip install fitlog
fitlog init V0
cd V0
fitlog log logs
then set use_fitlog = True in flat_main.py.
you can go here to know more about Fitlog.