forked from StartleStars/DeepMindBreak
-
Notifications
You must be signed in to change notification settings - Fork 0
/
decensor.py
executable file
·368 lines (313 loc) · 18.1 KB
/
decensor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
try:
# default library
import os, logging, sys, config
except ImportError as e:
print("Error when importing DEFAULT library : ", e)
print("\nIf you made script named [\"os.py\", \"logging.py\", \"sys.py\", \"config.py\"] rename it")
print("If not, re-install python or check your Python environment variables")
try:
# local library
import file
from model import InpaintNN
from libs.utils import *
# external library
import numpy as np
from PIL import Image
import tensorflow as tf
from PySide2 import QtCore # for QThread
except ImportError as e:
print("\n"+ '='*20 + " ImportError " + "=" * 20 + "\n")
if e.__class__.__name__ == "ModuleNotFoundError":
print(e)
print("Python libraries are missing. You can install all required libraries by running in the command line (terminal)")
print("cpu version : pip install -r requirements-cpu.txt")
print("gpu version : pip install -r requirements-gpu.txt")
else:
print("Error when importing libraries: ", e)
print("\nIf pip doesn't work, try update through Anaconda")
print("install Anaconda : https://www.anaconda.com/distribution/ \n")
class Decensor(QtCore.QThread):
def __init__(self, parentThread = None, text_edit = None, text_cursor = None, ui_mode = None):
super().__init__(parentThread)
args = config.get_args()
self.is_mosaic = args.is_mosaic
self.variations = args.variations
self.mask_color = [args.mask_color_red/255.0, args.mask_color_green/255.0, args.mask_color_blue/255.0]
self.decensor_input_path = args.decensor_input_path
self.decensor_input_original_path = args.decensor_input_original_path
self.decensor_output_path = args.decensor_output_path
self.signals = None # Signals class will be given by progressWindow
self.model = None
self.warm_up = False
# if ui_mode is not None:
# self.ui_mode = ui_mode
# else:
# self.ui_mode = args.ui_mode
#
# if self.ui_mode:
# self.text_edit = text_edit
# self.text_cursor = text_cursor
# self.ui_mode = True
if not os.path.exists(self.decensor_output_path):
os.makedirs(self.decensor_output_path)
def run(self):
if not self.warm_up :
print("if self.warm_up :")
self.load_model()
return
elif self.warm_up:
print("elif not self.warm_up:")
self.decensor_all_images_in_folder()
def stop(self):
# in case of stopping decensor, terminate not to run if self while MainWindow is closed
self.terminate()
def find_mask(self, colored):
# self.signals.update_progress_LABEL.emit("find_mask()", "finding mask...")
mask = np.ones(colored.shape, np.uint8)
i, j = np.where(np.all(colored[0] == self.mask_color, axis=-1))
mask[0, i, j] = 0
return mask
def load_model(self):
self.signals.insertText_progressCursor.emit("Loading model ... please wait ...\n")
if self.model is None :
self.model = InpaintNN(bar_model_name = "./models/bar/Train_775000.meta",
bar_checkpoint_name = "./models/bar/",
mosaic_model_name = "./models/mosaic/Train_290000.meta",
mosaic_checkpoint_name = "./models/mosaic/",
is_mosaic=self.is_mosaic)
self.warm_up = True
print("load model finished")
self.signals.insertText_progressCursor.emit("Loading model finished!\n")
self.signals.update_decensorButton_Text.emit("Decensor Your Images")
self.signals.update_decensorButton_Enabled.emit(True)
def decensor_all_images_in_folder(self):
#load model once at beginning and reuse same model
if not self.warm_up :
# incase of running by source code
self.load_model()
input_color_dir = self.decensor_input_path
file_names = os.listdir(input_color_dir)
input_dir = self.decensor_input_path
output_dir = self.decensor_output_path
# Change False to True before release --> file.check_file(input_dir, output_dir, True)
# self.signals.update_progress_LABEL.emit("file.check_file()", "Checking image files and directory...")
self.signals.insertText_progressCursor.emit("Checking image files and directory...\n")
file_names, self.files_removed = file.check_file(input_dir, output_dir, False)
# self.signals.total_ProgressBar_update_MAX_VALUE.emit("set total progress bar MaxValue : "+str(len(file_names)),len(file_names))
'''
print("set total progress bar MaxValue : "+str(len(file_names)))
self.signals.update_ProgressBar_MAX_VALUE.emit(len(file_names))
'''
self.signals.insertText_progressCursor.emit("Decensoring {} image files\n".format(len(file_names)))
#convert all images into np arrays and put them in a list
for n, file_name in enumerate(file_names, start = 1):
# self.signals.total_ProgressBar_update_VALUE.emit("Decensoring {} / {}".format(n, len(file_names)), n)
'''
self.update_ProgressBar_SET_VALUE.emit(n)
print("Decensoring {} / {}".format(n, len(file_names)))
'''
self.signals.insertText_progressCursor.emit("Decensoring image file : {}\n".format(file_name))
# signal progress bar value == masks decensored on image ,
# e.g) sample image : 17
# self.signals.signal_ProgressBar_update_VALUE.emit("reset value", 0) # set to 0 for every image at start
# self.signals.update_progress_LABEL.emit("for-loop, \"for file_name in file_names:\"","Decensoring : "+str(file_name))
color_file_path = os.path.join(input_color_dir, file_name)
color_basename, color_ext = os.path.splitext(file_name)
if os.path.isfile(color_file_path) and color_ext.casefold() == ".png":
print("--------------------------------------------------------------------------")
print("Decensoring the image {}\n".format(color_file_path))
try :
colored_img = Image.open(color_file_path)
except:
print("Cannot identify image file (" +str(color_file_path)+")")
self.files_removed.append((color_file_path,3))
# incase of abnormal file format change (ex : text.txt -> text.png)
continue
#if we are doing a mosaic decensor
if self.is_mosaic:
#get the original file that hasn't been colored
ori_dir = self.decensor_input_original_path
test_file_names = os.listdir(ori_dir)
#since the original image might not be a png, test multiple file formats
valid_formats = {".png", ".jpg", ".jpeg"}
for test_file_name in test_file_names:
test_basename, test_ext = os.path.splitext(test_file_name)
if (test_basename == color_basename) and (test_ext.casefold() in valid_formats):
ori_file_path = os.path.join(ori_dir, test_file_name)
ori_img = Image.open(ori_file_path)
# colored_img.show()
self.decensor_image_variations(ori_img, colored_img, file_name)
break
else: #for...else, i.e if the loop finished without encountering break
print("Corresponding original, uncolored image not found in {}".format(color_file_path))
print("Check if it exists and is in the PNG or JPG format.")
self.signals.insertText_progressCursor.emit("Corresponding original, uncolored image not found in {}\n".format(color_file_path))
self.signals.insertText_progressCursor.emit("Check if it exists and is in the PNG or JPG format.\n")
#if we are doing a bar decensor
else:
self.decensor_image_variations(colored_img, colored_img, file_name)
else:
print("--------------------------------------------------------------------------")
print("Image can't be found: "+str(color_file_path))
self.signals.insertText_progressCursor.emit("Image can't be found: "+str(color_file_path) + "\n")
print("--------------------------------------------------------------------------")
if self.files_removed is not None:
file.error_messages(None, self.files_removed)
print("\nDecensoring complete!")
#unload model to prevent memory issues
# self.signals.update_progress_LABEL.emit("finished", "Decensoring complete! Close this window and reopen DCP to start a new session.")
self.signals.insertText_progressCursor.emit("\nDecensoring complete! remove decensored file before decensoring again not to overwrite")
self.signals.update_decensorButton_Enabled.emit(True)
tf.reset_default_graph()
def decensor_image_variations(self, ori, colored, file_name=None):
for i in range(self.variations):
self.decensor_image_variation(ori, colored, i, file_name)
#create different decensors of the same image by flipping the input image
def apply_variant(self, image, variant_number):
if variant_number == 0:
return image
elif variant_number == 1:
return image.transpose(Image.FLIP_LEFT_RIGHT)
elif variant_number == 2:
return image.transpose(Image.FLIP_TOP_BOTTOM)
else:
return image.transpose(Image.FLIP_LEFT_RIGHT).transpose(Image.FLIP_TOP_BOTTOM)
#decensors one image at a time
#TODO: decensor all cropped parts of the same image in a batch (then i need input for colored an array of those images and make additional changes)
def decensor_image_variation(self, ori, colored, variant_number, file_name):
ori = self.apply_variant(ori, variant_number)
colored = self.apply_variant(colored, variant_number)
width, height = ori.size
#save the alpha channel if the image has an alpha channel
has_alpha = False
if (ori.mode == "RGBA"):
has_alpha = True
alpha_channel = np.asarray(ori)[:,:,3]
alpha_channel = np.expand_dims(alpha_channel, axis =-1)
ori = ori.convert('RGB')
ori_array = image_to_array(ori)
ori_array = np.expand_dims(ori_array, axis = 0)
if self.is_mosaic:
#if mosaic decensor, mask is empty
# mask = np.ones(ori_array.shape, np.uint8)
# print(mask.shape)
colored = colored.convert('RGB')
color_array = image_to_array(colored)
color_array = np.expand_dims(color_array, axis = 0)
mask = self.find_mask(color_array)
mask_reshaped = mask[0,:,:,:] * 255.0
mask_img = Image.fromarray(mask_reshaped.astype('uint8'))
# mask_img.show()
else:
mask = self.find_mask(ori_array)
#colored image is only used for finding the regions
regions = find_regions(colored.convert('RGB'), [v*255 for v in self.mask_color])
print("Found {region_count} censored regions in this image!".format(region_count = len(regions)))
self.signals.insertText_progressCursor.emit("Found {region_count} censored regions in this image!".format(region_count = len(regions)))
if len(regions) == 0 and not self.is_mosaic:
print("No green (0,255,0) regions detected! Make sure you're using exactly the right color.")
self.signals.insertText_progressCursor.emit("No green (0,255,0) regions detected! Make sure you're using exactly the right color.\n")
return
# self.signals.signal_ProgressBar_update_MAX_VALUE.emit("Found {} masked regions".format(len(regions)), len(regions))
print("Found {} masked regions".format(len(regions)))
# self.signals.insertText_progressCursor.emit("Found {} masked regions\n".format(len(regions)))
self.signals.update_ProgressBar_MAX_VALUE.emit(len(regions))
self.signals.update_ProgressBar_SET_VALUE.emit(0)
output_img_array = ori_array[0].copy()
for region_counter, region in enumerate(regions, 1):
# self.signals.update_progress_LABEL.emit("\"Decensoring regions in image\"","Decensoring censor {}/{}".format(region_counter,len(regions)))
self.signals.insertText_progressCursor.emit("Decensoring regions in image, Decensoring censor {}/{}".format(region_counter,len(regions)))
bounding_box = expand_bounding(ori, region, expand_factor=1.5)
crop_img = ori.crop(bounding_box)
# crop_img.show()
#convert mask back to image
mask_reshaped = mask[0,:,:,:] * 255.0
mask_img = Image.fromarray(mask_reshaped.astype('uint8'))
#resize the cropped images
crop_img = crop_img.resize((256, 256))
crop_img_array = image_to_array(crop_img)
#resize the mask images
mask_img = mask_img.crop(bounding_box)
mask_img = mask_img.resize((256, 256))
# mask_img.show()
#convert mask_img back to array
mask_array = image_to_array(mask_img)
#the mask has been upscaled so there will be values not equal to 0 or 1
# mask_array[mask_array > 0] = 1
# crop_img_array[..., :-1][mask_array==0] = (0,0,0)
if not self.is_mosaic:
a, b = np.where(np.all(mask_array == 0, axis = -1))
# print(a,b)
# print(crop_img_array[a,b])
# print(crop_img_array[a,b,0])
# print(crop_img_array.shape)
# print(type(crop_img_array[0,0]))
crop_img_array[a,b,:] = 0.
# temp = Image.fromarray((crop_img_array * 255.0).astype('uint8'))
# temp.show()
crop_img_array = np.expand_dims(crop_img_array, axis = 0)
mask_array = np.expand_dims(mask_array, axis = 0)
# print(np.amax(crop_img_array))
# print(np.amax(mask_array))
# print(np.amax(masked))
# print(np.amin(crop_img_array))
# print(np.amin(mask_array))
# print(np.amin(masked))
# print(mask_array)
crop_img_array = crop_img_array * 2.0 - 1
# mask_array = mask_array / 255.0
# Run predictions for this batch of images
pred_img_array = self.model.predict(crop_img_array, crop_img_array, mask_array)
pred_img_array = np.squeeze(pred_img_array, axis = 0)
pred_img_array = (255.0 * ((pred_img_array + 1.0) / 2.0)).astype(np.uint8)
#scale prediction image back to original size
bounding_width = bounding_box[2]-bounding_box[0]
bounding_height = bounding_box[3]-bounding_box[1]
#convert np array to image
# print(bounding_width,bounding_height)
# print(pred_img_array.shape)
pred_img = Image.fromarray(pred_img_array.astype('uint8'))
# pred_img.show()
pred_img = pred_img.resize((bounding_width, bounding_height), resample = Image.BICUBIC)
# pred_img.show()
pred_img_array = image_to_array(pred_img)
# print(pred_img_array.shape)
pred_img_array = np.expand_dims(pred_img_array, axis = 0)
# copy the decensored regions into the output image
for i in range(len(ori_array)):
for col in range(bounding_width):
for row in range(bounding_height):
bounding_width_index = col + bounding_box[0]
bounding_height_index = row + bounding_box[1]
if (bounding_width_index, bounding_height_index) in region:
output_img_array[bounding_height_index][bounding_width_index] = pred_img_array[i,:,:,:][row][col]
# self.signals.signal_ProgressBar_update_VALUE.emit("{} out of {} regions decensored.".format(region_counter, len(regions)), region_counter)
self.signals.update_ProgressBar_SET_VALUE.emit(region_counter)
self.signals.insertText_progressCursor.emit("{} out of {} regions decensored.\n".format(region_counter, len(regions)))
print("{region_counter} out of {region_count} regions decensored.".format(region_counter=region_counter, region_count=len(regions)))
output_img_array = output_img_array * 255.0
#restore the alpha channel if the image had one
if has_alpha:
output_img_array = np.concatenate((output_img_array, alpha_channel), axis = 2)
output_img = Image.fromarray(output_img_array.astype('uint8'))
output_img = self.apply_variant(output_img, variant_number)
# self.signals.update_progress_LABEL.emit("current image finished", "Decensoring of current image finished. Saving image...")
self.signals.insertText_progressCursor.emit("Decensoring of current image finished. Saving image...")
print("current image finished")
if file_name != None:
#save the decensored image
base_name, ext = os.path.splitext(file_name)
file_name = base_name + " " + str(variant_number) + ext
save_path = os.path.join(self.decensor_output_path, file_name)
output_img.save(save_path)
print("Decensored image saved to {save_path}!".format(save_path=save_path))
self.signals.insertText_progressCursor.emit("Decensored image saved to {save_path}!".format(save_path=save_path))
self.signals.insertText_progressCursor.emit("="*30)
else:
# Legacy Code piece ↓, used when DCPv1 had ui with Painting
print("Decensored image. Returning it.")
return output_img
# if __name__ == '__main__':
# decensor = Decensor()
# decensor.decensor_all_images_in_folder()
# equivalent to decensor.start() (running as QtThread)