-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathtest_engine.py
310 lines (253 loc) · 9.83 KB
/
test_engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import pytest
from lascar import *
from lascar.tools.aes import sbox
import tempfile
leakages = np.random.rand(300, 20)
values = np.random.randint(0, 256, (300, 2)).astype(np.uint8)
trace_batch_container = TraceBatchContainer(leakages, values)
hdf5_container = Hdf5Container.export(
trace_batch_container, tempfile.mkdtemp() + "/tmp.h5"
)
multiple_container = MultipleContainer(
TraceBatchContainer(leakages[:30], values[:30]),
TraceBatchContainer(leakages[30:150], values[30:150]),
TraceBatchContainer(leakages[150:], values[150:]),
)
randomized_container = RandomizedContainer(trace_batch_container)
simulator_container = BasicAesSimulationContainer(
300, 2, value_section="plaintext", additional_time_samples=4, seed=2
)
npy_container = NpyContainer.export(
trace_batch_container,
tempfile.mkdtemp() + "_leakages.npy",
tempfile.mkdtemp() + "_values.npy",
)
containers = [
trace_batch_container,
hdf5_container,
multiple_container,
randomized_container,
simulator_container,
npy_container,
]
@pytest.mark.parametrize("container", containers)
class TestNonRegressionBasic:
def test_mean_engine(self, container):
session = Session(container)
engine = session["mean"]
container_bis = container[:]
session.run()
assert np.all(np.isclose(engine.finalize(), container_bis.leakages.mean(0)))
def test_var_engine(self, container):
session = Session(container)
engine = session["var"]
container_bis = container[:]
session.run()
assert np.all(np.isclose(engine.finalize(), container_bis.leakages.var(0)))
functions = [
(lambda value: value[0] % 4, range(4)),
(lambda value: 3 + (value[-1] % 10), range(3, 13)),
]
functions_ttest = [
(lambda value: value[0] % 2, 2),
(lambda value: value[-1] % 2, 2),
]
class TestNonRegressionPartitionerEngine:
@pytest.mark.parametrize(
"container,partition,partition_range",
[(c, f[0], f[1]) for c in containers for f in functions],
)
def test_snr_engine(self, container, partition, partition_range):
session = Session(container)
engine = SnrEngine(partition, partition_range)
session.add_engine(engine)
session.run()
container_bis = container[:]
means = np.zeros(
(len(partition_range),) + container_bis.leakages.shape[1:], dtype=np.double
)
vars = np.zeros(
(len(partition_range),) + container_bis.leakages.shape[1:], dtype=np.double
)
nums =[]
denom =[]
for i, val in enumerate(partition_range):
idx = np.where(
np.apply_along_axis(partition, 1, container_bis.values) == val
)[0]
means[i] = container_bis.leakages[idx].mean(0)
vars[i] = container_bis.leakages[idx].var(0)
nums += [means[i]]*len(idx)
denom += [vars[i]]*len(idx)
snr_numpy = np.array(nums).var(0) / np.array(denom).mean(0)
assert np.all(np.isclose(snr_numpy, engine.finalize()))
@pytest.mark.parametrize(
"container,partition,partition_range",
[(c, f[0], f[1]) for c in containers for f in functions],
)
def test_nicv_engine(self, container, partition, partition_range):
session = Session(container)
engine = NicvEngine(partition, partition_range)
session.add_engine(engine)
session.run()
container_bis = container[:]
means = np.zeros(
(len(partition_range),) + container_bis.leakages.shape[1:], dtype=np.double
)
nums =[]
for i, val in enumerate(partition_range):
idx = np.where(
np.apply_along_axis(partition, 1, container_bis.values) == val
)[0]
means[i] = container_bis.leakages[idx].mean(0)
nums += [means[i]]*len(idx)
nicv_numpy = np.array(nums).var(0)/ container_bis.leakages.var(0)
assert np.all(np.isclose(nicv_numpy, engine.finalize()))
@pytest.mark.parametrize(
"container,partition", [(c, f[0]) for c in containers for f in functions_ttest]
)
def test_ttest_engine(self, container, partition):
session = Session(container)
engine = TTestEngine(partition)
session.add_engine(engine)
session.run()
container_bis = container[:]
indexes = [
np.where(np.apply_along_axis(partition, 1, container_bis.values) == val)[0]
for val in range(2)
]
m0 = container_bis.leakages[indexes[0]].mean(0)
m1 = container_bis.leakages[indexes[1]].mean(0)
v0 = container_bis.leakages[indexes[0]].var(0)
v1 = container_bis.leakages[indexes[1]].var(0)
ttest_numpy = (m0 - m1) / np.sqrt(
(v0 / len(indexes[0])) + (v1 / len(indexes[1]))
)
assert np.all(np.isclose(ttest_numpy, engine.finalize()))
@pytest.mark.parametrize(
"container,partition", [(c, f[0]) for c in containers for f in functions_ttest]
)
def test_ttest_higher_order_engine(self, container, partition):
for d in range(1, 6):
print(f"{d = }")
if d == 1:
self.test_ttest_engine(container, partition)
continue
session = Session(container)
engine = TTestEngine(partition, analysis_order=d)
session.add_engine(engine)
session.run()
container_bis = container[:]
indexes = [
np.where(np.apply_along_axis(partition, 1, container_bis.values) == val)[0]
for val in range(2)
]
l0 = container_bis.leakages[indexes[0]]
l1 = container_bis.leakages[indexes[1]]
# Compute mean (used for preprocessing traces)
m0 = l0.mean(0)
m1 = l1.mean(0)
if d == 2:
# Preprocess traces at order 2: p = (X-m)**2 (almost the variance)
p0 = np.power(l0 - m0, 2)
p1 = np.power(l1 - m1, 2)
else:
# Variance of original traces (used to preprocess traces for d > 2)
v0 = l0.var(0)
v1 = l1.var(0)
# Preprocess traces at order d > 2: p = ((X - m)/s)**d
# with s the standard deviation
p0 = np.power((l0 - m0) / np.sqrt(v0), d)
p1 = np.power((l1 - m1) / np.sqrt(v1), d)
# Compute ttest using preprocessed traces
true_m0 = p0.mean(0)
true_m1 = p1.mean(0)
true_v0 = p0.var(0)
true_v1 = p1.var(0)
ttest_numpy = (true_m0 - true_m1) / np.sqrt(
(true_v0 / len(indexes[0])) + (true_v1 / len(indexes[1]))
)
assert np.all(np.isclose(ttest_numpy, engine.finalize()))
functions = [
lambda value: hamming(value[0]),
lambda value: hamming_weight(value[-1]),
]
guess_functions = [
(lambda value, guess: hamming(value[0] ^ guess), range(4)),
(lambda value, guess: hamming(sbox[value[-1] ^ guess]), range(4, 14)),
]
leakage_models = [HammingPrecomputedModel()] + [BitLeakageModel(i) for i in range(2)]
guess_functions_for_partition = [
((lambda sensitive_value, guess: sensitive_value ^ guess), range(4)),
((lambda sensitive_value, guess: sbox[sensitive_value ^ guess]), range(4)),
]
class TestNonRegressionCpa:
@pytest.mark.parametrize(
"container,guess_function, guess_range, jitv",
[
(c, f[0], f[1], j)
for c in containers
for f in guess_functions
for j in [True, False]
],
)
def test_cpa_engine(self, container, guess_function, guess_range, jitv):
session = Session(container)
engine = CpaEngine(guess_function, guess_range, jit=jitv)
session.add_engine(engine)
session.run()
container_bis = container[:]
cpa_np = np.zeros((len(guess_range), container_bis.leakages.shape[1]))
for i, guess in enumerate(guess_range):
model = np.array([guess_function(d, guess) for d in container_bis.values])
cpa_np[i] = np.array(
[
np.corrcoef(model, container_bis.leakages[:, j])[0, 1]
for j in range(cpa_np.shape[1])
]
)
assert np.all(
np.isclose(engine.finalize(), cpa_np)
), "cpa non_regression test not passed."
@pytest.mark.parametrize(
"container, partition, partition_size, guess_function, guess_range, leakage_model",
[
(c, p, range(256), f[0], f[1], l)
for c in containers
for p in functions
for f in guess_functions_for_partition
for l in leakage_models
],
)
def test_cpa_partitioned_engine(
self,
container,
partition,
partition_size,
guess_function,
guess_range,
leakage_model,
):
f = lambda v, s: leakage_model(guess_function(v, s))
session = Session(container)
engine = CpaPartitionedEngine(partition, partition_size, f, guess_range,)
session.add_engine(engine)
session.run()
container_bis = container[:]
cpa_np = np.zeros((len(guess_range), container_bis.leakages.shape[1]))
for i, guess in enumerate(guess_range):
model = np.array(
[
leakage_model(guess_function(partition(d), guess))
for d in container_bis.values
]
)
cpa_np[i] = np.array(
[
np.corrcoef(model, container_bis.leakages[:, j])[0, 1]
for j in range(cpa_np.shape[1])
]
)
assert np.all(
np.isclose(engine.finalize(), cpa_np)
), "cpa non_regression test not passed."