-
Notifications
You must be signed in to change notification settings - Fork 3
/
main_semi.py
404 lines (354 loc) · 17.3 KB
/
main_semi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
# some code in this file is adapted from
# https://github.com/pytorch/examples
# Original Copyright 2017. Licensed under the BSD 3-Clause License.
# Modifications Copyright Lang Huang (laynehuang@outlook.com). All Rights Reserved.
# SPDX-License-Identifier: CC-BY-NC-4.0
import argparse
import builtins
import math
import os
import random
import shutil
import time
import warnings
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.models as models
import backbone as customized_models
import data.transforms as data_transforms
from utils import utils, get_norm, dist_init
from engine import validate
from data.base_dataset import get_dataset
default_model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
customized_models_names = sorted(name for name in customized_models.__dict__
if name.islower() and not name.startswith("__")
and callable(customized_models.__dict__[name]))
for name in customized_models.__dict__:
if name.islower() and not name.startswith("__") and callable(customized_models.__dict__[name]):
models.__dict__[name] = customized_models.__dict__[name]
model_names = default_model_names + customized_models_names
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--dataset', default="in1k",
help='name of dataset', choices=['in1k', 'in100', 'im_folder', 'in1k_idx'])
parser.add_argument('--data-root', default="",
help='root of dataset folder')
parser.add_argument('--trainindex', default=None, type=str, metavar='PATH',
help='path to train annotation (default: None)')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet50',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet50)')
parser.add_argument('--cls', default=1000, type=int, metavar='N',
help='number of classes')
parser.add_argument('-j', '--workers', default=32, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--schedule', default=[30, 60], nargs='*', type=int,
help='learning rate schedule (when to drop lr by a ratio)')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--lr-classifier', default=-1, type=float,
metavar='LR', help='initial learning rate for classifier')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=50, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--eval-freq', default=1, type=int,
metavar='N', help='evaluation epoch frequency (default: 1)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--pretrained', default='', type=str, metavar='PATH',
help='path to pretrained model (default: none)')
parser.add_argument('--self-pretrained', default='', type=str, metavar='PATH',
help='path to MoCo pretrained model (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--world-size', default=-1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--port', default=5389, type=int,
help='communication port for distributed training. ')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--multiprocessing-distributed', action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
parser.add_argument('--cos', action='store_true',
help='use cosine lr schedule')
# online_net.backbone for BYOL
parser.add_argument('--model-prefix', default='encoder_q', type=str,
help='the model prefix of self-supervised pretrained state_dict')
parser.add_argument('--norm', default='None', type=str,
help='the normalization for backbone (default: None)')
parser.add_argument('--save-dir', default="ckpts",
help='checkpoint directory')
best_acc1 = 0
def main(args):
global best_acc1
args.gpu = args.local_rank
# suppress printing if not master
if args.multiprocessing_distributed and args.gpu != 0:
def print_pass(*args):
pass
builtins.print = print_pass
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
# create model
print("=> creating model '{}'".format(args.arch))
norm = get_norm(args.norm)
model = models.__dict__[args.arch](num_classes=args.cls, norm_layer=norm)
print(model)
if args.pretrained:
if os.path.isfile(args.pretrained):
print("=> loading pretrained model from '{}'".format(args.pretrained))
checkpoint = torch.load(args.pretrained, map_location="cpu")
state_dict = checkpoint['state_dict']
for k in list(state_dict.keys()):
new_key = k.replace("module.", "")
state_dict[new_key] = state_dict[k]
del state_dict[k]
model_num_cls = state_dict['fc.weight'].shape[0]
if model_num_cls != args.cls:
# if num_cls don't match, remove the last layer
del state_dict['fc.weight']
del state_dict['fc.bias']
msg = model.load_state_dict(state_dict, strict=False)
assert set(msg.missing_keys) == {"fc.weight", "fc.bias"}, \
"missing keys:\n{}".format('\n'.join(msg.missing_keys))
else:
model.load_state_dict(state_dict)
print("=> loaded pre-trained model '{}' (epoch {})".format(args.pretrained, checkpoint['epoch']))
else:
print("=> no pretrained model found at '{}'".format(args.pretrained))
elif args.self_pretrained:
if os.path.isfile(args.self_pretrained):
print("=> loading checkpoint '{}'".format(args.self_pretrained))
checkpoint = torch.load(args.self_pretrained, map_location="cpu")
if 'state_dict' in checkpoint:
# rename moco pre-trained keys
state_dict = checkpoint['state_dict']
model_prefix = 'module.' + args.model_prefix
for k in list(state_dict.keys()):
# retain only student model up to before the embedding layer
if k.startswith(model_prefix) and not k.startswith(model_prefix + '.fc'):
# remove prefix
new_key = k.replace(model_prefix + '.', "")
state_dict[new_key] = state_dict[k]
# delete renamed or unused k
del state_dict[k]
else:
state_dict = checkpoint
args.start_epoch = 0
msg = model.load_state_dict(state_dict, strict=False)
if len(msg.missing_keys) > 0:
print("missing keys:\n{}".format('\n'.join(msg.missing_keys)))
if len(msg.unexpected_keys) > 0:
print("unexpected keys:\n{}".format('\n'.join(msg.unexpected_keys)))
if 'epoch' in checkpoint:
print("=> loaded pre-trained model '{}' (epoch {})".format(args.self_pretrained, checkpoint['epoch']))
else:
print("=> loaded pre-trained model '{}' ".format(args.self_pretrained))
else:
print("=> no checkpoint found at '{}'".format(args.self_pretrained))
model.cuda()
args.batch_size = int(args.batch_size / args.world_size)
args.workers = int((args.workers + args.world_size - 1) / args.world_size)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank])
# define loss function (criterion)
criterion = nn.CrossEntropyLoss().cuda(args.gpu)
# define optimizers for different parameter groups
if args.lr != args.lr_classifier:
print("using separate parameter groups with different learning rates!")
feature_params, classifier_params = [], []
feature_names, classifier_names = [], []
for name, param in model.named_parameters():
if 'fc.' in name:
classifier_params += [param]
classifier_names += [name]
else:
feature_params += [param]
feature_names += [name]
print("classifier params: {} using lr {}".format(classifier_names, args.lr_classifier))
print("the rest params using lr {}".format(args.lr))
optimizer = torch.optim.SGD([
{'params': feature_params},
{'params': classifier_params, 'lr': args.lr_classifier}
], args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
else:
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
if args.gpu is None:
checkpoint = torch.load(args.resume)
else:
# Map model to be loaded to specified single gpu.
loc = 'cuda:{}'.format(args.gpu)
checkpoint = torch.load(args.resume, map_location=loc)
args.start_epoch = checkpoint['epoch']
best_acc1 = checkpoint['best_acc1']
if args.gpu is not None:
# best_acc1 may be from a checkpoint from a different GPU
best_acc1 = best_acc1.to(args.gpu)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
# Data loading code
# Data loading code
train_transforms = data_transforms.get_transforms("DefaultTrain")
train_dataset = get_dataset('in1k_idx', mode='train', data_root=args.data_root,
idx=args.trainindex, transform=train_transforms)
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler,
persistent_workers=True)
val_transforms = data_transforms.get_transforms("DefaultVal")
val_loader = torch.utils.data.DataLoader(
get_dataset(args.dataset, mode='val',
data_root=args.data_root, transform=val_transforms),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True,
persistent_workers=True)
if args.evaluate:
validate(val_loader, model, criterion, args)
return
best_epoch = args.start_epoch
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
adjust_learning_rate(optimizer, epoch, args)
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch, args)
if (epoch + 1) % args.eval_freq == 0:
# evaluate on validation set
acc1 = validate(val_loader, model, criterion, args)
# remember best acc@1 and save checkpoint
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
if is_best:
best_epoch = epoch
if not args.multiprocessing_distributed or (args.multiprocessing_distributed
and args.rank % args.world_size == 0):
utils.save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_acc1': best_acc1,
'optimizer': optimizer.state_dict(),
}, is_best)
print('Best Acc@1 {0} @ epoch {1}'.format(best_acc1, best_epoch + 1))
def train(train_loader, model, criterion, optimizer, epoch, args):
batch_time = utils.AverageMeter('Time', ':6.3f')
data_time = utils.AverageMeter('Data', ':6.3f')
losses = utils.AverageMeter('Loss', ':.4e')
top1 = utils.AverageMeter('Acc@1', ':6.2f')
top5 = utils.AverageMeter('Acc@5', ':6.2f')
if len(optimizer.param_groups) > 1:
curr_lr = [param_group['lr'] for param_group in optimizer.param_groups]
else:
curr_lr = optimizer.param_groups[0]['lr']
progress = utils.ProgressMeter(
len(train_loader),
[batch_time, data_time, losses, top1, top5],
prefix="Epoch: [{}/{}]\t"
"LR: {}\t".format(epoch, args.epochs, curr_lr))
# switch to train mode
model.train()
end = time.time()
for i, (images, target, _) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
if args.gpu is not None:
images = images.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# compute output
output = model(images)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'model_best.pth.tar')
def adjust_learning_rate(optimizer, epoch, args):
"""Decay the learning rate based on schedule"""
num_groups = len(optimizer.param_groups)
assert 1 <= num_groups <= 2
lrs = []
if num_groups == 1:
lrs += [args.lr]
elif num_groups == 2:
lrs += [args.lr, args.lr_classifier]
assert len(lrs) == num_groups
for group_id, param_group in enumerate(optimizer.param_groups):
lr = lrs[group_id]
if args.cos: # cosine lr schedule
lr *= 0.5 * (1. + math.cos(math.pi * epoch / args.epochs))
else: # stepwise lr schedule
for milestone in args.schedule:
lr *= 0.1 if epoch >= milestone else 1.
param_group['lr'] = lr
if __name__ == '__main__':
opt = parser.parse_args()
opt.distributed = True
opt.multiprocessing_distributed = True
_, opt.local_rank, opt.world_size = dist_init(opt.port)
cudnn.benchmark = True
# suppress printing if not master
if dist.get_rank() != 0:
def print_pass(*args, **kwargs):
pass
builtins.print = print_pass
main(opt)