-
Notifications
You must be signed in to change notification settings - Fork 3
/
main.py
408 lines (357 loc) · 17.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
# some code in this file is adapted from
# https://github.com/pytorch/examples
# Original Copyright 2017. Licensed under the BSD 3-Clause License.
# Modifications Copyright Lang Huang (laynehuang@outlook.com). All Rights Reserved.
# SPDX-License-Identifier: CC-BY-NC-4.0
import argparse
import builtins
from logging import root
import os
import time
import torch
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import backbone as backbone_models
from models import get_lewel_model
from utils import utils, lr_schedule, LARS, get_norm, dist_init
import data.transforms as data_transforms
from engine import ss_validate
from data.base_dataset import get_dataset
backbone_model_names = sorted(name for name in backbone_models.__dict__
if name.islower() and not name.startswith("__")
and callable(backbone_models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--dataset', default="in1k",
help='name of dataset', choices=['in1k', 'in100', 'im_folder', 'in1k_idx'])
parser.add_argument('--data-root', default="",
help='root of dataset folder')
parser.add_argument('--arch', metavar='ARCH', default='LEWEL',
help='model architecture')
parser.add_argument('--backbone', default='resnet50_encoder',
choices=backbone_model_names,
help='model architecture: ' +
' | '.join(backbone_model_names) +
' (default: resnet50_encoder)')
parser.add_argument('-j', '--workers', default=64, type=int, metavar='N',
help='number of data loading workers (default: 64)')
parser.add_argument('--epochs', default=200, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--warmup-epoch', default=0, type=int, metavar='N',
help='number of epochs for learning warmup')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.03, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--schedule', default=[120, 160], nargs='*', type=int,
help='learning rate schedule (when to drop lr by 10x)')
parser.add_argument('--cos', action='store_true', help='use cosine lr schedule')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum of SGD solver')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('--save-dir', default="ckpts",
help='checkpoint directory')
parser.add_argument('-p', '--print-freq', default=50, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--save-freq', default=10, type=int,
metavar='N', help='checkpoint save frequency (default: 10)')
parser.add_argument('--eval-freq', default=5, type=int,
metavar='N', help='evaluation epoch frequency (default: 5)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--pretrained', default='', type=str, metavar='PATH',
help='path to pretrained model (default: none)')
parser.add_argument('--super-pretrained', default='', type=str, metavar='PATH',
help='path to MoCo pretrained model (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--world-size', default=-1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--seed', default=23456, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--port', default=5389, type=int,
help='communication port for distributed training. ')
parser.add_argument('--multiprocessing-distributed', action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
# ssl specific configs:
parser.add_argument('--proj-dim', default=256, type=int,
help='feature dimension (default: 256)')
parser.add_argument('--enc-m', default=0.996, type=float,
help='momentum of updating key encoder (default: 0.996)')
parser.add_argument('--norm', default='None', type=str,
help='the normalization for network (default: None)')
parser.add_argument('--num-neck-mlp', default=2, type=int,
help='number of neck mlp (default: 2)')
parser.add_argument('--hid-dim', default=4096, type=int,
help='hidden dimension of mlp (default: 4096)')
parser.add_argument('--amp', action='store_true',
help='use automatic mixed precision training')
# options for LEWEL
parser.add_argument('--lewel-l2-norm', action='store_true',
help='use l2-norm before applying softmax on attention map')
parser.add_argument('--lewel-scale', default=1., type=float,
help='Scale factor of attention map (default: 1.)')
parser.add_argument('--lewel-num-heads', default=8, type=int,
help='Number of heads in lewel (default: 8)')
parser.add_argument('--lewel-loss-weight', default=0.5, type=float,
help='loss weight for aligned branch (default: 0.5)')
# options for KNN search
parser.add_argument('--num-nn', default=20, type=int,
help='Number of nearest neighbors (default: 20)')
parser.add_argument('--nn-mem-percent', type=float, default=0.1,
help='number of percentage mem datan for KNN evaluation')
parser.add_argument('--nn-query-percent', type=float, default=0.5,
help='number of percentage query datan for KNN evaluation')
best_acc1 = 0
def main(args):
global best_acc1
args.gpu = args.local_rank
# create model
print("=> creating model '{}' with backbone '{}'".format(args.arch, args.backbone))
model_func = get_lewel_model(args.arch)
norm_layer = get_norm(args.norm)
model = model_func(
backbone_models.__dict__[args.backbone],
dim=args.proj_dim,
m=args.enc_m,
hid_dim=args.hid_dim,
norm_layer=norm_layer,
num_neck_mlp=args.num_neck_mlp,
scale=args.lewel_scale,
l2_norm=args.lewel_l2_norm,
num_heads=args.lewel_num_heads,
loss_weight=args.lewel_loss_weight,
)
print(model)
print(args)
if args.pretrained:
if os.path.isfile(args.pretrained):
print("=> loading pretrained model from '{}'".format(args.pretrained))
state_dict = torch.load(args.pretrained, map_location="cpu")['state_dict']
# rename state_dict keys
for k in list(state_dict.keys()):
new_key = k.replace("module.", "")
state_dict[new_key] = state_dict[k]
del state_dict[k]
msg = model.load_state_dict(state_dict, strict=False)
print("=> loaded pretrained model from '{}'".format(args.pretrained))
if len(msg.missing_keys) > 0:
print("missing keys: {}".format(msg.missing_keys))
if len(msg.unexpected_keys) > 0:
print("unexpected keys: {}".format(msg.unexpected_keys))
else:
print("=> no pretrained model found at '{}'".format(args.pretrained))
model.cuda()
args.batch_size = int(args.batch_size / args.world_size)
args.workers = int((args.workers + args.world_size - 1) / args.world_size)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank])
# define optimizer
params = collect_params(model, exclude_bias_and_bn=True, sync_bn='EMAN' in args.arch)
optimizer = LARS(params, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
scaler = torch.cuda.amp.GradScaler() if args.amp else None
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
if args.gpu is None:
checkpoint = torch.load(args.resume)
else:
# Map model to be loaded to specified single gpu.
loc = 'cuda:{}'.format(args.gpu)
checkpoint = torch.load(args.resume, map_location=loc)
args.start_epoch = checkpoint['epoch']
if 'best_acc1' in checkpoint:
best_acc1 = checkpoint['best_acc1']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
if 'scaler' in checkpoint:
scaler.load_state_dict(checkpoint['scaler'])
else:
print("no scaler checkpoint")
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
# Data loading code
transform1, transform2 = data_transforms.get_byol_tranforms()
train_dataset = get_dataset(
args.dataset,
mode='train',
transform=data_transforms.TwoCropsTransform(transform1, transform2),
data_root=args.data_root)
print("train_dataset:\n{}".format(train_dataset))
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler, drop_last=True,
persistent_workers=True)
val_loader_base = torch.utils.data.DataLoader(
get_dataset(
args.dataset,
mode='val',
transform=data_transforms.get_transforms("DefaultVal"),
data_root=args.data_root,
percent=args.nn_mem_percent
),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers//2, pin_memory=True,
persistent_workers=True)
val_loader_query = torch.utils.data.DataLoader(
get_dataset(
args.dataset,
mode='val',
transform=data_transforms.get_transforms("DefaultVal"),
data_root=args.data_root,
percent=args.nn_query_percent,
),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers//2, pin_memory=True,
persistent_workers=True)
if args.evaluate:
ss_validate(val_loader_base, val_loader_query, model, args)
return
best_epoch = args.start_epoch
for epoch in range(args.start_epoch, args.epochs):
train_sampler.set_epoch(epoch)
if epoch >= args.warmup_epoch:
lr_schedule.adjust_learning_rate(optimizer, epoch, args)
# train for one epoch
train(train_loader, model, optimizer, scaler, epoch, args)
is_best = False
if (epoch + 1) % args.eval_freq == 0:
acc1 = ss_validate(val_loader_base, val_loader_query, model, args)
# remember best acc@1 and save checkpoint
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
if is_best:
best_epoch = epoch
if not args.multiprocessing_distributed or (args.multiprocessing_distributed
and args.local_rank % args.world_size == 0):
utils.save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_acc1': best_acc1,
'optimizer': optimizer.state_dict(),
'scaler': None if scaler is None else scaler.state_dict(),
}, is_best=is_best, epoch=epoch, args=args)
print('Best Acc@1 {0} @ epoch {1}'.format(best_acc1, best_epoch + 1))
def train(train_loader, model, optimizer, scaler, epoch, args):
batch_time = utils.AverageMeter('Time', ':6.3f')
data_time = utils.AverageMeter('Data', ':6.3f')
losses = utils.AverageMeter('Loss', ':.4e')
curr_lr = utils.InstantMeter('LR', '')
curr_mom = utils.InstantMeter('MOM', '')
progress = utils.ProgressMeter(
len(train_loader),
[curr_lr, curr_mom, batch_time, data_time, losses],
prefix="Epoch: [{}/{}]\t".format(epoch, args.epochs))
# iter info
batch_iter = len(train_loader)
max_iter = float(batch_iter * args.epochs)
# switch to train mode
model.train()
if "EMAN" in args.arch:
print("setting the key model to eval mode when using EMAN")
if hasattr(model, 'module'):
model.module.target_net.eval()
else:
model.target_net.eval()
end = time.time()
for i, (images, _, idx) in enumerate(train_loader):
# update model momentum
curr_iter = float(epoch * batch_iter + i)
# measure data loading time
data_time.update(time.time() - end)
if args.gpu is not None:
images[0] = images[0].cuda(args.gpu, non_blocking=True)
images[1] = images[1].cuda(args.gpu, non_blocking=True)
idx = idx.cuda(args.gpu, non_blocking=True)
# warmup learning rate
if epoch < args.warmup_epoch:
warmup_step = args.warmup_epoch * batch_iter
curr_step = epoch * batch_iter + i + 1
lr_schedule.warmup_learning_rate(optimizer, curr_step, warmup_step, args)
curr_lr.update(optimizer.param_groups[0]['lr'])
if scaler is None:
# compute loss
loss = model(im_v1=images[0], im_v2=images[1], idx=idx)
# measure accuracy and record loss
losses.update(loss.item(), images[0].size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
else: # AMP
optimizer.zero_grad()
with torch.cuda.amp.autocast():
loss = model(im_v1=images[0], im_v2=images[1], idx=idx)
# measure accuracy and record loss
losses.update(loss.item(), images[0].size(0))
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
if hasattr(model, 'module'):
model.module.momentum_update(curr_iter, max_iter)
curr_mom.update(model.module.curr_m)
else:
model.momentum_update(curr_iter, max_iter)
curr_mom.update(model.curr_m)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
def collect_params(model, exclude_bias_and_bn=True, sync_bn=True):
"""
exclude_bias_and bn: exclude bias and bn from both weight decay and LARS adaptation
in the PyTorch implementation of ResNet, `downsample.1` are bn layers
"""
weight_param_list, bn_and_bias_param_list = [], []
weight_param_names, bn_and_bias_param_names = [], []
for name, param in model.named_parameters():
if exclude_bias_and_bn and ('bn' in name or 'downsample.1' in name or 'bias' in name or (sync_bn and 'mlp.1' in name)):
bn_and_bias_param_list.append(param)
bn_and_bias_param_names.append(name)
else:
weight_param_list.append(param)
weight_param_names.append(name)
print("weight params:\n{}".format('\n'.join(weight_param_names)))
print("bn and bias params:\n{}".format('\n'.join(bn_and_bias_param_names)))
param_list = [{'params': bn_and_bias_param_list, 'weight_decay': 0., 'lars_exclude': True},
{'params': weight_param_list}]
return param_list
if __name__ == '__main__':
opt = parser.parse_args()
opt.distributed = True
opt.multiprocessing_distributed = True
_, opt.local_rank, opt.world_size = dist_init(opt.port)
cudnn.benchmark = True
# suppress printing if not master
if dist.get_rank() != 0:
def print_pass(*args, **kwargs):
pass
builtins.print = print_pass
main(opt)