-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocessor.py
226 lines (163 loc) · 7.65 KB
/
processor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#!/usr/bin/env python
# pylint: disable=W0201
import sys
import os
import argparse
import numpy as np
from dataset import DataSet
from models import O3N
# torch
import torch
import torch.nn as nn
import torch.optim as optim
class Processor():
"""
Base Processor
"""
def __init__(self, argv=None):
self.load_args(argv)
def load_args(self, argv=None):
parser = self.get_parser()
self.args = parser.parse_args(argv)
def load_model(self):
self.model = O3N(self.args.model_type, self.args.num_video)
self.model = torch.nn.DataParallel(self.model).cuda()
def load_weights(self):
if self.args.weights:
self.model.load_state_dict(torch.load(self.args.weights), strict=False)
def init_weights(self, m):
classname=m.__class__.__name__
#print(classname)
if classname.find('Conv2d') != -1:
nn.init.xavier_normal_(m.weight.data)
nn.init.constant_(m.bias.data, 0.0)
elif classname.find('Linear') != -1:
nn.init.xavier_normal_(m.weight.data)
nn.init.constant_(m.bias.data, 0.0)
def load_data(self):
self.data_loader = dict()
if self.args.phase == 'train':
self.data_loader['train'] = torch.utils.data.DataLoader(
dataset=DataSet(self.args.train_list, self.args.num_video, self.args.num_select_frames),
batch_size=self.args.batch_size,
shuffle=True,
num_workers=self.args.num_worker,
drop_last=True)
self.data_loader['test'] = torch.utils.data.DataLoader(
dataset=DataSet(self.args.test_list, self.args.num_video, self.args.num_select_frames),
batch_size=self.args.test_batch_size,
shuffle=False,
num_workers=self.args.num_worker)
def train(self):
self.model.train()
loader = self.data_loader['train']
acc = 0
len = 0
for data, label in loader:
data = data.type(torch.FloatTensor).cuda()
label = label.type(torch.LongTensor).cuda()
#print(data)
#print(label)
# forward
output = self.model(data)
#print(output)
loss = self.loss(output, label)
_, pre = torch.max(output, 1)
#print(pre)
#print(label)
tmp_acc = sum((pre == label)).type(torch.FloatTensor) / pre.shape[0]
acc += tmp_acc
len += 1
# backward
self.optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args.clip_gradient)
self.optimizer.step()
# statistics
#sys.stdout.write("acc: {} and loss:{}\n".format(acc, loss.data))
#with open(self.args.save_output, "a") as f:
# f.write("acc: {} and loss:{}\n".format(tmp_acc, loss.data))
#print(loss.data)
with open(self.args.save_output, "a") as f:
f.write("avg acc: {}\n".format(acc/len))
def test(self, evaluation=True):
self.model.eval()
loader = self.data_loader['test']
acc = 0
len = 0
for data, label in loader:
# get data
data = data.type(torch.FloatTensor).cuda()
label = label.type(torch.LongTensor).cuda()
# inference
with torch.no_grad():
output = self.model(data)
_, pre = torch.max(output, 1)
acc += sum((pre == label)).type(torch.FloatTensor) / pre.shape[0]
len += 1
#sys.stdout.write("test acc: {}\n".format(acc))
with open(self.args.save_output, "a") as f:
f.write("test acc: {}\n".format(acc/len))
def start(self):
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(str(x) for x in self.args.gpus)
self.load_model()
self.model.apply(self.init_weights)
self.load_weights()
self.load_data()
# training phase
if self.args.phase == 'train':
self.optimizer = optim.SGD(params=self.model.parameters(), lr=1e-2)
self.loss = torch.nn.CrossEntropyLoss().cuda()
self.scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer, step_size=60, gamma=0.1)
for epoch in range(self.args.start_epoch, self.args.num_epoch):
self.scheduler.step()
# training
self.train()
# save model
if ((epoch + 1) % self.args.save_interval == 0) or (
epoch + 1 == self.args.num_epoch):
filename = self.args.save_weights.format(epoch + 1)
torch.save(self.model.state_dict(), filename)
# evaluation
if ((epoch + 1) % self.args.eval_interval == 0) or (
epoch + 1 == self.args.num_epoch):
self.test()
# test phase
elif self.args.phase == 'test':
# the path of weights must be appointed
if self.args.weights is None:
raise ValueError('Please appoint --weights.')
# evaluation
self.test()
@staticmethod
def get_parser(add_help=False):
#region argsuments yapf: disable
# parameter priority: command line > config > default
parser = argparse.ArgumentParser( add_help=add_help, description='Base Processor')
parser.add_argument('-w', '--work_dir', default='./work_dir/tmp', help='the work folder for storing results')
# processor
parser.add_argument('--phase', default='train', help='must be train or test')
parser.add_argument('--num_video', type=int, default=6, help='num_video')
parser.add_argument('--save_interval', type=int, default=100, help='save_interval')
parser.add_argument('--save_output', default='self_supervised/stdout', help='save_output')
parser.add_argument('--save_weights', default='self_supervised/epoch{}_model.pt', help='save_weights')
parser.add_argument('--eval_interval', type=int, default=50, help='eval_interval')
parser.add_argument('--start_epoch', type=int, default=0, help='start training from which epoch')
parser.add_argument('--num_epoch', type=int, default=200, help='stop training in which epoch')
parser.add_argument('--gpus', type=list, default=[0, 1], help='the indexes of GPUs for training or testing')
parser.add_argument('--clip_gradient', type=int, default=100, help='clip_gradient')
# dataset
parser.add_argument('--train_list', default='/mnt/Action2/linlilang/PKUMMD-Skeleton/PKUMMD_1/xview/M/train_data.npy', help='train list file')
parser.add_argument('--test_list', default='/mnt/Action2/linlilang/PKUMMD-Skeleton/PKUMMD_1/xview/M/val_data.npy', help='test list file')
parser.add_argument('--num_select_frames', type=int, default=60, help='num_select_frames')
parser.add_argument('--num_worker', type=int, default=2, help='the number of worker per gpu for data loader')
parser.add_argument('--batch_size', type=int, default=64, help='training batch size')
parser.add_argument('--test_batch_size', type=int, default=64, help='test batch size')
# models
parser.add_argument('--weights', default=None, help='the weights for network initialization')
parser.add_argument('--model_type', default='new', help='model_type')
#endregion yapf: enable
return parser
if __name__ == "__main__":
processor = Processor()
processor.start()