-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraceback.txt
19 lines (17 loc) · 1.43 KB
/
traceback.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
None
0%| | 1/8568 [00:25<61:14:20, 25.73s/it]
Traceback (most recent call last):
File "/home/redkitters/projects/python/keysmashzappies/train.py", line 181, in <module>
tune()
File "/home/redkitters/projects/python/keysmashzappies/train.py", line 175, in tune
hist, _ = train_model(conv_layers, fully_connected_layers, dropout_p)
File "/home/redkitters/projects/python/keysmashzappies/train.py", line 114, in train_model
x = MaxPooling1D(pool_size=pooling_size)(x)
File "/home/redkitters/projects/python/keysmashzappies/venv/lib/python3.10/site-packages/keras/utils/traceback_utils.py", line 67, in error_handler
raise e.with_traceback(filtered_tb) from None
File "/home/redkitters/projects/python/keysmashzappies/venv/lib/python3.10/site-packages/keras/backend.py", line 6106, in pool2d
x = tf.compat.v1.nn.max_pool(
ValueError: Exception encountered when calling layer "max_pooling1d_18" (type MaxPooling1D).
Negative dimension size caused by subtracting from for '{{node max_pooling1d_18/MaxPool}} = MaxPool[T=DT_FLOAT, data_format="NHWC", explicit_paddings=[], ksize=[1, 3, 1, 1], padding="VALID", strides=[1, 3, 1, 1]](max_pooling1d_18/ExpandDims)' with input shapes: [?,1,1,128].
Call arguments received by layer "max_pooling1d_18" (type MaxPooling1D):
• inputs=tf.Tensor(shape=(None, 1, 128), dtype=float32)