forked from FRRouting/frr
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbgpd.texi
2041 lines (1709 loc) · 74.2 KB
/
bgpd.texi
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
@c -*-texinfo-*-
@c This is part of the Frr Manual.
@c @value{COPYRIGHT_STR}
@c Portions:
@c Copyright @copyright{} 2015 Hewlett Packard Enterprise Development LP
@c See file frr.texi for copying conditions.
@node BGP
@chapter BGP
@acronym{BGP} stands for a Border Gateway Protocol. The lastest BGP version
is 4. It is referred as BGP-4. BGP-4 is one of the Exterior Gateway
Protocols and de-fact standard of Inter Domain routing protocol.
BGP-4 is described in @cite{RFC1771, A Border Gateway Protocol
4 (BGP-4)}.
Many extensions have been added to @cite{RFC1771}. @cite{RFC2858,
Multiprotocol Extensions for BGP-4} provides multiprotocol support to
BGP-4.
@menu
* Starting BGP::
* BGP router::
* BGP MED::
* BGP network::
* BGP Peer::
* BGP Peer Group::
* BGP Address Family::
* Autonomous System::
* BGP Communities Attribute::
* BGP Extended Communities Attribute::
* Displaying BGP routes::
* Capability Negotiation::
* Route Reflector::
* Route Server::
* How to set up a 6-Bone connection::
* Dump BGP packets and table::
* BGP Configuration Examples::
@end menu
@node Starting BGP
@section Starting BGP
Default configuration file of @command{bgpd} is @file{bgpd.conf}.
@command{bgpd} searches the current directory first then
@value{INSTALL_PREFIX_ETC}/bgpd.conf. All of bgpd's command must be
configured in @file{bgpd.conf}.
@command{bgpd} specific invocation options are described below. Common
options may also be specified (@pxref{Common Invocation Options}).
@table @samp
@item -p @var{PORT}
@itemx --bgp_port=@var{PORT}
Set the bgp protocol's port number.
@item -r
@itemx --retain
When program terminates, retain BGP routes added by zebra.
@item -l
@itemx --listenon
Specify a specific IP address for bgpd to listen on, rather than its
default of INADDR_ANY / IN6ADDR_ANY. This can be useful to constrain bgpd
to an internal address, or to run multiple bgpd processes on one host.
@end table
@node BGP router
@section BGP router
First of all you must configure BGP router with @command{router bgp}
command. To configure BGP router, you need AS number. AS number is an
identification of autonomous system. BGP protocol uses the AS number
for detecting whether the BGP connection is internal one or external one.
@deffn Command {router bgp @var{asn}} {}
Enable a BGP protocol process with the specified @var{asn}. After
this statement you can input any @code{BGP Commands}. You can not
create different BGP process under different @var{asn} without
specifying @code{multiple-instance} (@pxref{Multiple instance}).
@end deffn
@deffn Command {no router bgp @var{asn}} {}
Destroy a BGP protocol process with the specified @var{asn}.
@end deffn
@deffn {BGP} {bgp router-id @var{A.B.C.D}} {}
This command specifies the router-ID. If @command{bgpd} connects to @command{zebra} it gets
interface and address information. In that case default router ID value
is selected as the largest IP Address of the interfaces. When
@code{router zebra} is not enabled @command{bgpd} can't get interface information
so @code{router-id} is set to 0.0.0.0. So please set router-id by hand.
@end deffn
@menu
* BGP distance::
* BGP decision process::
* BGP route flap dampening::
@end menu
@node BGP distance
@subsection BGP distance
@deffn {BGP} {distance bgp <1-255> <1-255> <1-255>} {}
This command change distance value of BGP. Each argument is distance
value for external routes, internal routes and local routes.
@end deffn
@deffn {BGP} {distance <1-255> @var{A.B.C.D/M}} {}
@deffnx {BGP} {distance <1-255> @var{A.B.C.D/M} @var{word}} {}
This command set distance value to
@end deffn
@node BGP decision process
@subsection BGP decision process
The decision process Frr BGP uses to select routes is as follows:
@table @asis
@item 1. Weight check
prefer higher local weight routes to lower routes.
@item 2. Local preference check
prefer higher local preference routes to lower.
@item 3. Local route check
Prefer local routes (statics, aggregates, redistributed) to received routes.
@item 4. AS path length check
Prefer shortest hop-count AS_PATHs.
@item 5. Origin check
Prefer the lowest origin type route. That is, prefer IGP origin routes to
EGP, to Incomplete routes.
@item 6. MED check
Where routes with a MED were received from the same AS,
prefer the route with the lowest MED. @xref{BGP MED}.
@item 7. External check
Prefer the route received from an external, eBGP peer
over routes received from other types of peers.
@item 8. IGP cost check
Prefer the route with the lower IGP cost.
@item 9. Multi-path check
If multi-pathing is enabled, then check whether
the routes not yet distinguished in preference may be considered equal. If
@ref{bgp bestpath as-path multipath-relax} is set, all such routes are
considered equal, otherwise routes received via iBGP with identical AS_PATHs
or routes received from eBGP neighbours in the same AS are considered equal.
@item 10 Already-selected external check
Where both routes were received from eBGP peers, then prefer the route which
is already selected. Note that this check is not applied if @ref{bgp
bestpath compare-routerid} is configured. This check can prevent some cases
of oscillation.
@item 11. Router-ID check
Prefer the route with the lowest @w{router-ID}. If the
route has an @w{ORIGINATOR_ID} attribute, through iBGP reflection, then that
router ID is used, otherwise the @w{router-ID} of the peer the route was
received from is used.
@item 12. Cluster-List length check
The route with the shortest cluster-list
length is used. The cluster-list reflects the iBGP reflection path the
route has taken.
@item 13. Peer address
Prefer the route received from the peer with the higher
transport layer address, as a last-resort tie-breaker.
@end table
@deffn {BGP} {bgp bestpath as-path confed} {}
This command specifies that the length of confederation path sets and
sequences should should be taken into account during the BGP best path
decision process.
@end deffn
@deffn {BGP} {bgp bestpath as-path multipath-relax} {}
@anchor{bgp bestpath as-path multipath-relax}
This command specifies that BGP decision process should consider paths
of equal AS_PATH length candidates for multipath computation. Without
the knob, the entire AS_PATH must match for multipath computation.
@end deffn
@deffn {BGP} {bgp bestpath compare-routerid} {}
@anchor{bgp bestpath compare-routerid}
Ensure that when comparing routes where both are equal on most metrics,
including local-pref, AS_PATH length, IGP cost, MED, that the tie is broken
based on router-ID.
If this option is enabled, then the already-selected check, where
already selected eBGP routes are preferred, is skipped.
If a route has an @w{ORIGINATOR_ID} attribute because it has been reflected,
that @w{ORIGINATOR_ID} will be used. Otherwise, the router-ID of the peer the
route was received from will be used.
The advantage of this is that the route-selection (at this point) will be
more deterministic. The disadvantage is that a few or even one lowest-ID
router may attract all trafic to otherwise-equal paths because of this
check. It may increase the possibility of MED or IGP oscillation, unless
other measures were taken to avoid these. The exact behaviour will be
sensitive to the iBGP and reflection topology.
@end deffn
@node BGP route flap dampening
@subsection BGP route flap dampening
@deffn {BGP} {bgp dampening @var{<1-45>} @var{<1-20000>} @var{<1-20000>} @var{<1-255>}} {}
This command enables BGP route-flap dampening and specifies dampening parameters.
@table @asis
@item @asis{half-life}
Half-life time for the penalty
@item @asis{reuse-threshold}
Value to start reusing a route
@item @asis{suppress-threshold}
Value to start suppressing a route
@item @asis{max-suppress}
Maximum duration to suppress a stable route
@end table
The route-flap damping algorithm is compatible with @cite{RFC2439}. The use of this command
is not recommended nowadays, see @uref{http://www.ripe.net/ripe/docs/ripe-378,,RIPE-378}.
@end deffn
@node BGP MED
@section BGP MED
The BGP MED (Multi_Exit_Discriminator) attribute has properties which can
cause subtle convergence problems in BGP. These properties and problems
have proven to be hard to understand, at least historically, and may still
not be widely understood. The following attempts to collect together and
present what is known about MED, to help operators and Frr users in
designing and configuring their networks.
The BGP @acronym{MED, Multi_Exit_Discriminator} attribute is intended to
allow one AS to indicate its preferences for its ingress points to another
AS. The MED attribute will not be propagated on to another AS by the
receiving AS - it is `non-transitive' in the BGP sense.
E.g., if AS X and AS Y have 2 different BGP peering points, then AS X
might set a MED of 100 on routes advertised at one and a MED of 200 at the
other. When AS Y selects between otherwise equal routes to or via
AS X, AS Y should prefer to take the path via the lower MED peering of 100 with
AS X. Setting the MED allows an AS to influence the routing taken to it
within another, neighbouring AS.
In this use of MED it is not really meaningful to compare the MED value on
routes where the next AS on the paths differs. E.g., if AS Y also had a
route for some destination via AS Z in addition to the routes from AS X, and
AS Z had also set a MED, it wouldn't make sense for AS Y to compare AS Z's
MED values to those of AS X. The MED values have been set by different
administrators, with different frames of reference.
The default behaviour of BGP therefore is to not compare MED values across
routes received from different neighbouring ASes. In Frr this is done by
comparing the neighbouring, left-most AS in the received AS_PATHs of the
routes and only comparing MED if those are the same.
@c TeXInfo uses the old, non-UTF-8 capable, pdftex, and so
@c doesn't render TeX the unicode precedes character correctly in PDF, etc.
@c Using a TeX code on the other hand doesn't work for non-TeX outputs
@c (plaintext, e.g.). So, use an output-conditional macro.
@iftex
@macro mprec{}
@math{\\prec}
@end macro
@end iftex
@ifnottex
@macro mprec{}
@math{≺}
@end macro
@end ifnottex
Unfortunately, this behaviour of MED, of sometimes being compared across
routes and sometimes not, depending on the properties of those other routes,
means MED can cause the order of preference over all the routes to be
undefined. That is, given routes A, B, and C, if A is preferred to B, and B
is preferred to C, then a well-defined order should mean the preference is
transitive (in the sense of orders @footnote{For some set of objects to have
an order, there @emph{must} be some binary ordering relation that is defined
for @emph{every} combination of those objects, and that relation @emph{must}
be transitive. I.e.@:, if the relation operator is @mprec{}, and if
a @mprec{} b and b @mprec{} c then that relation must carry over
and it @emph{must} be that a @mprec{} c for the objects to have an
order. The ordering relation may allow for equality, i.e.
a @mprec{} b and b @mprec{} a may both be true amd imply that
a and b are equal in the order and not distinguished by it, in
which case the set has a partial order. Otherwise, if there is an order,
all the objects have a distinct place in the order and the set has a total
order.}) and that A would be preferred to C.
However, when MED is involved this need not be the case. With MED it is
possible that C is actually preferred over A. So A is preferred to B, B is
preferred to C, but C is preferred to A. This can be true even where BGP
defines a deterministic ``most preferred'' route out of the full set of
A,B,C. With MED, for any given set of routes there may be a
deterministically preferred route, but there need not be any way to arrange
them into any order of preference. With unmodified MED, the order of
preference of routes literally becomes undefined.
That MED can induce non-transitive preferences over routes can cause issues.
Firstly, it may be perceived to cause routing table churn locally at
speakers; secondly, and more seriously, it may cause routing instability in
iBGP topologies, where sets of speakers continually oscillate between
different paths.
The first issue arises from how speakers often implement routing decisions.
Though BGP defines a selection process that will deterministically select
the same route as best at any given speaker, even with MED, that process
requires evaluating all routes together. For performance and ease of
implementation reasons, many implementations evaluate route preferences in a
pair-wise fashion instead. Given there is no well-defined order when MED is
involved, the best route that will be chosen becomes subject to
implementation details, such as the order the routes are stored in. That
may be (locally) non-deterministic, e.g.@: it may be the order the routes
were received in.
This indeterminism may be considered undesirable, though it need not cause
problems. It may mean additional routing churn is perceived, as sometimes
more updates may be produced than at other times in reaction to some event .
This first issue can be fixed with a more deterministic route selection that
ensures routes are ordered by the neighbouring AS during selection.
@xref{bgp deterministic-med}. This may reduce the number of updates as
routes are received, and may in some cases reduce routing churn. Though, it
could equally deterministically produce the largest possible set of updates
in response to the most common sequence of received updates.
A deterministic order of evaluation tends to imply an additional overhead of
sorting over any set of n routes to a destination. The implementation of
deterministic MED in Frr scales significantly worse than most sorting
algorithms at present, with the number of paths to a given destination.
That number is often low enough to not cause any issues, but where there are
many paths, the deterministic comparison may quickly become increasingly
expensive in terms of CPU.
Deterministic local evaluation can @emph{not} fix the second, more major,
issue of MED however. Which is that the non-transitive preference of routes
MED can cause may lead to routing instability or oscillation across multiple
speakers in iBGP topologies. This can occur with full-mesh iBGP, but is
particularly problematic in non-full-mesh iBGP topologies that further
reduce the routing information known to each speaker. This has primarily
been documented with iBGP route-reflection topologies. However, any
route-hiding technologies potentially could also exacerbate oscillation with
MED.
This second issue occurs where speakers each have only a subset of routes,
and there are cycles in the preferences between different combinations of
routes - as the undefined order of preference of MED allows - and the routes
are distributed in a way that causes the BGP speakers to 'chase' those
cycles. This can occur even if all speakers use a deterministic order of
evaluation in route selection.
E.g., speaker 4 in AS A might receive a route from speaker 2 in AS X, and
from speaker 3 in AS Y; while speaker 5 in AS A might receive that route
from speaker 1 in AS Y. AS Y might set a MED of 200 at speaker 1, and 100
at speaker 3. I.e, using ASN:ID:MED to label the speakers:
@example
/---------------\
X:2------|--A:4-------A:5--|-Y:1:200
Y:3:100--|-/ |
\---------------/
@end example
Assuming all other metrics are equal (AS_PATH, ORIGIN, 0 IGP costs), then
based on the RFC4271 decision process speaker 4 will choose X:2 over
Y:3:100, based on the lower ID of 2. Speaker 4 advertises X:2 to speaker 5.
Speaker 5 will continue to prefer Y:1:200 based on the ID, and advertise
this to speaker 4. Speaker 4 will now have the full set of routes, and the
Y:1:200 it receives from 5 will beat X:2, but when speaker 4 compares
Y:1:200 to Y:3:100 the MED check now becomes active as the ASes match, and
now Y:3:100 is preferred. Speaker 4 therefore now advertises Y:3:100 to 5,
which will also agrees that Y:3:100 is preferred to Y:1:200, and so
withdraws the latter route from 4. Speaker 4 now has only X:2 and Y:3:100,
and X:2 beats Y:3:100, and so speaker 4 implicitly updates its route to
speaker 5 to X:2. Speaker 5 sees that Y:1:200 beats X:2 based on the ID,
and advertises Y:1:200 to speaker 4, and the cycle continues.
The root cause is the lack of a clear order of preference caused by how MED
sometimes is and sometimes is not compared, leading to this cycle in the
preferences between the routes:
@example
/---> X:2 ---beats---> Y:3:100 --\
| |
| |
\---beats--- Y:1:200 <---beats---/
@end example
This particular type of oscillation in full-mesh iBGP topologies can be
avoided by speakers preferring already selected, external routes rather than
choosing to update to new a route based on a post-MED metric (e.g.
router-ID), at the cost of a non-deterministic selection process. Frr
implements this, as do many other implementations, so long as it is not
overridden by setting @ref{bgp bestpath compare-routerid}, and see also
@ref{BGP decision process}, .
However, more complex and insidious cycles of oscillation are possible with
iBGP route-reflection, which are not so easily avoided. These have been
documented in various places. See, e.g., @cite{McPherson, D. and Gill, V.
and Walton, D., "Border Gateway Protocol (BGP) Persistent Route Oscillation
Condition", IETF RFC3345}, and @cite{Flavel, A. and M. Roughan, "Stable
and flexible iBGP", ACM SIGCOMM 2009}, and @cite{Griffin, T. and G. Wilfong,
"On the correctness of IBGP configuration", ACM SIGCOMM 2002} for concrete
examples and further references.
There is as of this writing @emph{no} known way to use MED for its original
purpose; @emph{and} reduce routing information in iBGP topologies;
@emph{and} be sure to avoid the instability problems of MED due the
non-transitive routing preferences it can induce; in general on arbitrary
networks.
There may be iBGP topology specific ways to reduce the instability risks,
even while using MED, e.g.@: by constraining the reflection topology and by
tuning IGP costs between route-reflector clusters, see RFC3345 for details.
In the near future, the Add-Path extension to BGP may also solve MED
oscillation while still allowing MED to be used as intended, by distributing
"best-paths per neighbour AS". This would be at the cost of distributing at
least as many routes to all speakers as a full-mesh iBGP would, if not more,
while also imposing similar CPU overheads as the "Deterministic MED" feature
at each Add-Path reflector.
More generally, the instability problems that MED can introduce on more
complex, non-full-mesh, iBGP topologies may be avoided either by:
@itemize
@item
Setting @ref{bgp always-compare-med}, however this allows MED to be compared
across values set by different neighbour ASes, which may not produce
coherent desirable results, of itself.
@item
Effectively ignoring MED by setting MED to the same value (e.g.@: 0) using
@ref{routemap set metric} on all received routes, in combination with
setting @ref{bgp always-compare-med} on all speakers. This is the simplest
and most performant way to avoid MED oscillation issues, where an AS is happy
not to allow neighbours to inject this problematic metric.
@end itemize
As MED is evaluated after the AS_PATH length check, another possible use for
MED is for intra-AS steering of routes with equal AS_PATH length, as an
extension of the last case above. As MED is evaluated before IGP metric,
this can allow cold-potato routing to be implemented to send traffic to
preferred hand-offs with neighbours, rather than the closest hand-off
according to the IGP metric.
Note that even if action is taken to address the MED non-transitivity
issues, other oscillations may still be possible. E.g., on IGP cost if
iBGP and IGP topologies are at cross-purposes with each other - see the
Flavel and Roughan paper above for an example. Hence the guideline that the
iBGP topology should follow the IGP topology.
@deffn {BGP} {bgp deterministic-med} {}
@anchor{bgp deterministic-med}
Carry out route-selection in way that produces deterministic answers
locally, even in the face of MED and the lack of a well-defined order of
preference it can induce on routes. Without this option the preferred route
with MED may be determined largely by the order that routes were received
in.
Setting this option will have a performance cost that may be noticeable when
there are many routes for each destination. Currently in Frr it is
implemented in a way that scales poorly as the number of routes per
destination increases.
The default is that this option is not set.
@end deffn
Note that there are other sources of indeterminism in the route selection
process, specifically, the preference for older and already selected routes
from eBGP peers, @xref{BGP decision process}.
@deffn {BGP} {bgp always-compare-med} {}
@anchor{bgp always-compare-med}
Always compare the MED on routes, even when they were received from
different neighbouring ASes. Setting this option makes the order of
preference of routes more defined, and should eliminate MED induced
oscillations.
If using this option, it may also be desirable to use @ref{routemap set
metric} to set MED to 0 on routes received from external neighbours.
This option can be used, together with @ref{routemap set metric} to use MED
as an intra-AS metric to steer equal-length AS_PATH routes to, e.g., desired
exit points.
@end deffn
@node BGP network
@section BGP network
@menu
* BGP route::
* Route Aggregation::
* Redistribute to BGP::
@end menu
@node BGP route
@subsection BGP route
@deffn {BGP} {network @var{A.B.C.D/M}} {}
This command adds the announcement network.
@example
@group
router bgp 1
address-family ipv4 unicast
network 10.0.0.0/8
exit-address-family
@end group
@end example
This configuration example says that network 10.0.0.0/8 will be
announced to all neighbors. Some vendors' routers don't advertise
routes if they aren't present in their IGP routing tables; @code{bgpd}
doesn't care about IGP routes when announcing its routes.
@end deffn
@deffn {BGP} {no network @var{A.B.C.D/M}} {}
@end deffn
@node Route Aggregation
@subsection Route Aggregation
@deffn {BGP} {aggregate-address @var{A.B.C.D/M}} {}
This command specifies an aggregate address.
@end deffn
@deffn {BGP} {aggregate-address @var{A.B.C.D/M} as-set} {}
This command specifies an aggregate address. Resulting routes include
AS set.
@end deffn
@deffn {BGP} {aggregate-address @var{A.B.C.D/M} summary-only} {}
This command specifies an aggregate address. Aggreated routes will
not be announce.
@end deffn
@deffn {BGP} {no aggregate-address @var{A.B.C.D/M}} {}
@end deffn
@node Redistribute to BGP
@subsection Redistribute to BGP
@deffn {BGP} {redistribute kernel} {}
Redistribute kernel route to BGP process.
@end deffn
@deffn {BGP} {redistribute static} {}
Redistribute static route to BGP process.
@end deffn
@deffn {BGP} {redistribute connected} {}
Redistribute connected route to BGP process.
@end deffn
@deffn {BGP} {redistribute rip} {}
Redistribute RIP route to BGP process.
@end deffn
@deffn {BGP} {redistribute ospf} {}
Redistribute OSPF route to BGP process.
@end deffn
@deffn {BGP} {redistribute vpn} {}
Redistribute VNC routes to BGP process.
@end deffn
@deffn {BGP} {update-delay @var{max-delay}} {}
@deffnx {BGP} {update-delay @var{max-delay} @var{establish-wait}} {}
This feature is used to enable read-only mode on BGP process restart or when
BGP process is cleared using 'clear ip bgp *'. When applicable, read-only mode
would begin as soon as the first peer reaches Established status and a timer
for max-delay seconds is started.
During this mode BGP doesn't run any best-path or generate any updates to its
peers. This mode continues until:
1. All the configured peers, except the shutdown peers, have sent explicit EOR
(End-Of-RIB) or an implicit-EOR. The first keep-alive after BGP has reached
Established is considered an implicit-EOR.
If the establish-wait optional value is given, then BGP will wait for
peers to reach established from the begining of the update-delay till the
establish-wait period is over, i.e. the minimum set of established peers for
which EOR is expected would be peers established during the establish-wait
window, not necessarily all the configured neighbors.
2. max-delay period is over.
On hitting any of the above two conditions, BGP resumes the decision process
and generates updates to its peers.
Default max-delay is 0, i.e. the feature is off by default.
@end deffn
@deffn {BGP} {table-map @var{route-map-name}} {}
This feature is used to apply a route-map on route updates from BGP to Zebra.
All the applicable match operations are allowed, such as match on prefix,
next-hop, communities, etc. Set operations for this attach-point are limited
to metric and next-hop only. Any operation of this feature does not affect
BGPs internal RIB.
Supported for ipv4 and ipv6 address families. It works on multi-paths as well,
however, metric setting is based on the best-path only.
@end deffn
@node BGP Peer
@section BGP Peer
@menu
* Defining Peer::
* BGP Peer commands::
* Peer filtering::
@end menu
@node Defining Peer
@subsection Defining Peer
@deffn {BGP} {neighbor @var{peer} remote-as @var{asn}} {}
Creates a new neighbor whose remote-as is @var{asn}. @var{peer}
can be an IPv4 address or an IPv6 address.
@example
@group
router bgp 1
neighbor 10.0.0.1 remote-as 2
@end group
@end example
In this case my router, in AS-1, is trying to peer with AS-2 at
10.0.0.1.
This command must be the first command used when configuring a neighbor.
If the remote-as is not specified, @command{bgpd} will complain like this:
@example
can't find neighbor 10.0.0.1
@end example
@end deffn
@node BGP Peer commands
@subsection BGP Peer commands
In a @code{router bgp} clause there are neighbor specific configurations
required.
@deffn {BGP} {neighbor @var{peer} shutdown} {}
@deffnx {BGP} {no neighbor @var{peer} shutdown} {}
Shutdown the peer. We can delete the neighbor's configuration by
@code{no neighbor @var{peer} remote-as @var{as-number}} but all
configuration of the neighbor will be deleted. When you want to
preserve the configuration, but want to drop the BGP peer, use this
syntax.
@end deffn
@deffn {BGP} {neighbor @var{peer} ebgp-multihop} {}
@deffnx {BGP} {no neighbor @var{peer} ebgp-multihop} {}
@end deffn
@deffn {BGP} {neighbor @var{peer} description ...} {}
@deffnx {BGP} {no neighbor @var{peer} description ...} {}
Set description of the peer.
@end deffn
@deffn {BGP} {neighbor @var{peer} version @var{version}} {}
Set up the neighbor's BGP version. @var{version} can be @var{4},
@var{4+} or @var{4-}. BGP version @var{4} is the default value used for
BGP peering. BGP version @var{4+} means that the neighbor supports
Multiprotocol Extensions for BGP-4. BGP version @var{4-} is similar but
the neighbor speaks the old Internet-Draft revision 00's Multiprotocol
Extensions for BGP-4. Some routing software is still using this
version.
@end deffn
@deffn {BGP} {neighbor @var{peer} interface @var{ifname}} {}
@deffnx {BGP} {no neighbor @var{peer} interface @var{ifname}} {}
When you connect to a BGP peer over an IPv6 link-local address, you
have to specify the @var{ifname} of the interface used for the
connection. To specify IPv4 session addresses, see the
@code{neighbor @var{peer} update-source} command below.
This command is deprecated and may be removed in a future release. Its
use should be avoided.
@end deffn
@deffn {BGP} {neighbor @var{peer} next-hop-self [all]} {}
@deffnx {BGP} {no neighbor @var{peer} next-hop-self [all]} {}
This command specifies an announced route's nexthop as being equivalent
to the address of the bgp router if it is learned via eBGP.
If the optional keyword @code{all} is specified the modifiation is done
also for routes learned via iBGP.
@end deffn
@deffn {BGP} {neighbor @var{peer} update-source @var{<ifname|address>}} {}
@deffnx {BGP} {no neighbor @var{peer} update-source} {}
Specify the IPv4 source address to use for the @acronym{BGP} session to this
neighbour, may be specified as either an IPv4 address directly or
as an interface name (in which case the @command{zebra} daemon MUST be running
in order for @command{bgpd} to be able to retrieve interface state).
@example
@group
router bgp 64555
neighbor foo update-source 192.168.0.1
neighbor bar update-source lo0
@end group
@end example
@end deffn
@deffn {BGP} {neighbor @var{peer} default-originate} {}
@deffnx {BGP} {no neighbor @var{peer} default-originate} {}
@command{bgpd}'s default is to not announce the default route (0.0.0.0/0) even it
is in routing table. When you want to announce default routes to the
peer, use this command.
@end deffn
@deffn {BGP} {neighbor @var{peer} port @var{port}} {}
@deffnx {BGP} {neighbor @var{peer} port @var{port}} {}
@end deffn
@deffn {BGP} {neighbor @var{peer} send-community} {}
@deffnx {BGP} {neighbor @var{peer} send-community} {}
@end deffn
@deffn {BGP} {neighbor @var{peer} weight @var{weight}} {}
@deffnx {BGP} {no neighbor @var{peer} weight @var{weight}} {}
This command specifies a default @var{weight} value for the neighbor's
routes.
@end deffn
@deffn {BGP} {neighbor @var{peer} maximum-prefix @var{number}} {}
@deffnx {BGP} {no neighbor @var{peer} maximum-prefix @var{number}} {}
@end deffn
@deffn {BGP} {neighbor @var{peer} local-as @var{as-number}} {}
@deffnx {BGP} {neighbor @var{peer} local-as @var{as-number} no-prepend} {}
@deffnx {BGP} {neighbor @var{peer} local-as @var{as-number} no-prepend replace-as} {}
@deffnx {BGP} {no neighbor @var{peer} local-as} {}
Specify an alternate AS for this BGP process when interacting with the
specified peer. With no modifiers, the specified local-as is prepended to
the received AS_PATH when receiving routing updates from the peer, and
prepended to the outgoing AS_PATH (after the process local AS) when
transmitting local routes to the peer.
If the no-prepend attribute is specified, then the supplied local-as is not
prepended to the received AS_PATH.
If the replace-as attribute is specified, then only the supplied local-as is
prepended to the AS_PATH when transmitting local-route updates to this peer.
Note that replace-as can only be specified if no-prepend is.
This command is only allowed for eBGP peers.
@end deffn
@deffn {BGP} {neighbor @var{peer} ttl-security hops @var{number}} {}
@deffnx {BGP} {no neighbor @var{peer} ttl-security hops @var{number}} {}
This command enforces Generalized TTL Security Mechanism (GTSM), as
specified in RFC 5082. With this command, only neighbors that are the
specified number of hops away will be allowed to become neighbors. This
command is mututally exclusive with @command{ebgp-multihop}.
@end deffn
@node Peer filtering
@subsection Peer filtering
@deffn {BGP} {neighbor @var{peer} distribute-list @var{name} [in|out]} {}
This command specifies a distribute-list for the peer. @var{direct} is
@samp{in} or @samp{out}.
@end deffn
@deffn {BGP command} {neighbor @var{peer} prefix-list @var{name} [in|out]} {}
@end deffn
@deffn {BGP command} {neighbor @var{peer} filter-list @var{name} [in|out]} {}
@end deffn
@deffn {BGP} {neighbor @var{peer} route-map @var{name} [in|out]} {}
Apply a route-map on the neighbor. @var{direct} must be @code{in} or
@code{out}.
@end deffn
@deffn {BGP} {bgp route-reflector allow-outbound-policy} {}
By default, attribute modification via route-map policy out is not reflected
on reflected routes. This option allows the modifications to be reflected as
well. Once enabled, it affects all reflected routes.
@end deffn
@c -----------------------------------------------------------------------
@node BGP Peer Group
@section BGP Peer Group
@deffn {BGP} {neighbor @var{word} peer-group} {}
This command defines a new peer group.
@end deffn
@deffn {BGP} {neighbor @var{peer} peer-group @var{word}} {}
This command bind specific peer to peer group @var{word}.
@end deffn
@node BGP Address Family
@section BGP Address Family
Multiprotocol BGP enables BGP to carry routing information for multiple
Network Layer protocols. BGP supports multiple Address Family
Identifier (AFI), namely IPv4 and IPv6. Support is also provided for
multiple sets of per-AFI information via Subsequent Address Family
Identifiers (SAFI). In addition to unicast information, VPN information
@cite{RFC4364} and @cite{RFC4659}, and Encapsulation information
@cite{RFC5512} is supported.
@deffn {Command} {show ip bgp vpnv4 all} {}
@deffnx {Command} {show ipv6 bgp vpn all} {}
Print active IPV4 or IPV6 routes advertised via the VPN SAFI.
@end deffn
@deffn {Command} {show ip bgp encap all} {}
@deffnx {Command} {show ipv6 bgp encap all} {}
Print active IPV4 or IPV6 routes advertised via the Encapsulation SAFI.
@end deffn
@deffn {Command} {show bgp ipv4 encap summary} {}
@deffnx {Command} {show bgp ipv4 vpn summary} {}
@deffnx {Command} {show bgp ipv6 encap summary} {}
@deffnx {Command} {show bgp ipv6 vpn summary} {}
Print a summary of neighbor connections for the specified AFI/SAFI combination.
@end deffn
@c -----------------------------------------------------------------------
@node Autonomous System
@section Autonomous System
The @acronym{AS,Autonomous System} number is one of the essential
element of BGP. BGP is a distance vector routing protocol, and the
AS-Path framework provides distance vector metric and loop detection to
BGP. @cite{RFC1930, Guidelines for creation, selection, and
registration of an Autonomous System (AS)} provides some background on
the concepts of an AS.
The AS number is a two octet value, ranging in value from 1 to 65535.
The AS numbers 64512 through 65535 are defined as private AS numbers.
Private AS numbers must not to be advertised in the global Internet.
@menu
* AS Path Regular Expression::
* Display BGP Routes by AS Path::
* AS Path Access List::
* Using AS Path in Route Map::
* Private AS Numbers::
@end menu
@node AS Path Regular Expression
@subsection AS Path Regular Expression
AS path regular expression can be used for displaying BGP routes and
AS path access list. AS path regular expression is based on
@code{POSIX 1003.2} regular expressions. Following description is
just a subset of @code{POSIX} regular expression. User can use full
@code{POSIX} regular expression. Adding to that special character '_'
is added for AS path regular expression.
@table @code
@item .
Matches any single character.
@item *
Matches 0 or more occurrences of pattern.
@item +
Matches 1 or more occurrences of pattern.
@item ?
Match 0 or 1 occurrences of pattern.
@item ^
Matches the beginning of the line.
@item $
Matches the end of the line.
@item _
Character @code{_} has special meanings in AS path regular expression.
It matches to space and comma , and AS set delimiter @{ and @} and AS
confederation delimiter @code{(} and @code{)}. And it also matches to
the beginning of the line and the end of the line. So @code{_} can be
used for AS value boundaries match. @code{show ip bgp regexp _7675_}
matches to all of BGP routes which as AS number include @var{7675}.
@end table
@node Display BGP Routes by AS Path
@subsection Display BGP Routes by AS Path
To show BGP routes which has specific AS path information @code{show
ip bgp} command can be used.
@deffn Command {show ip bgp regexp @var{line}} {}
This commands display BGP routes that matches AS path regular
expression @var{line}.
@end deffn
@node AS Path Access List
@subsection AS Path Access List
AS path access list is user defined AS path.
@deffn {Command} {ip as-path access-list @var{word} @{permit|deny@} @var{line}} {}
This command defines a new AS path access list.
@end deffn
@deffn {Command} {no ip as-path access-list @var{word}} {}
@deffnx {Command} {no ip as-path access-list @var{word} @{permit|deny@} @var{line}} {}
@end deffn
@node Using AS Path in Route Map
@subsection Using AS Path in Route Map
@deffn {Route Map} {match as-path @var{word}} {}
@end deffn
@deffn {Route Map} {set as-path prepend @var{as-path}} {}
Prepend the given string of AS numbers to the AS_PATH.
@end deffn
@deffn {Route Map} {set as-path prepend last-as @var{num}} {}
Prepend the existing last AS number (the leftmost ASN) to the AS_PATH.
@end deffn
@node Private AS Numbers
@subsection Private AS Numbers
@c -----------------------------------------------------------------------
@node BGP Communities Attribute
@section BGP Communities Attribute
BGP communities attribute is widely used for implementing policy
routing. Network operators can manipulate BGP communities attribute
based on their network policy. BGP communities attribute is defined
in @cite{RFC1997, BGP Communities Attribute} and
@cite{RFC1998, An Application of the BGP Community Attribute
in Multi-home Routing}. It is an optional transitive attribute,
therefore local policy can travel through different autonomous system.
Communities attribute is a set of communities values. Each
communities value is 4 octet long. The following format is used to
define communities value.
@table @code
@item AS:VAL
This format represents 4 octet communities value. @code{AS} is high
order 2 octet in digit format. @code{VAL} is low order 2 octet in
digit format. This format is useful to define AS oriented policy
value. For example, @code{7675:80} can be used when AS 7675 wants to
pass local policy value 80 to neighboring peer.
@item internet
@code{internet} represents well-known communities value 0.
@item no-export
@code{no-export} represents well-known communities value @code{NO_EXPORT}@*
@r{(0xFFFFFF01)}. All routes carry this value must not be advertised
to outside a BGP confederation boundary. If neighboring BGP peer is
part of BGP confederation, the peer is considered as inside a BGP
confederation boundary, so the route will be announced to the peer.
@item no-advertise
@code{no-advertise} represents well-known communities value
@code{NO_ADVERTISE}@*@r{(0xFFFFFF02)}. All routes carry this value
must not be advertise to other BGP peers.
@item local-AS
@code{local-AS} represents well-known communities value
@code{NO_EXPORT_SUBCONFED} @r{(0xFFFFFF03)}. All routes carry this
value must not be advertised to external BGP peers. Even if the
neighboring router is part of confederation, it is considered as
external BGP peer, so the route will not be announced to the peer.
@end table
When BGP communities attribute is received, duplicated communities
value in the communities attribute is ignored and each communities
values are sorted in numerical order.
@menu
* BGP Community Lists::
* Numbered BGP Community Lists::
* BGP Community in Route Map::
* Display BGP Routes by Community::
* Using BGP Communities Attribute::
@end menu
@node BGP Community Lists
@subsection BGP Community Lists
BGP community list is a user defined BGP communites attribute list.
BGP community list can be used for matching or manipulating BGP
communities attribute in updates.