|
| 1 | +from typing import Any, Dict, Optional, Tuple |
| 2 | + |
| 3 | +import ConfigSpace as CS |
| 4 | +import numpy as np |
| 5 | +from ConfigSpace.configuration_space import ConfigurationSpace |
| 6 | +from ConfigSpace.hyperparameters import ( |
| 7 | + CategoricalHyperparameter |
| 8 | +) |
| 9 | +from torch import nn |
| 10 | + |
| 11 | +from autoPyTorch.pipeline.components.setup.network.backbone import get_available_backbones, BaseBackbone, MLPBackbone, \ |
| 12 | + ShapedMLPBackbone |
| 13 | +from autoPyTorch.pipeline.components.setup.network.base_network import BaseNetworkComponent |
| 14 | +from autoPyTorch.pipeline.components.setup.network.head import get_available_heads, BaseHead, FullyConnectedHead |
| 15 | + |
| 16 | + |
| 17 | +class BackboneHeadNet(BaseNetworkComponent): |
| 18 | + """ |
| 19 | + Implementation of a dynamic network, that consists of a backbone and a head |
| 20 | + """ |
| 21 | + |
| 22 | + def __init__( |
| 23 | + self, |
| 24 | + random_state: Optional[np.random.RandomState] = None, |
| 25 | + **kwargs: Any |
| 26 | + ): |
| 27 | + super().__init__( |
| 28 | + random_state=random_state, |
| 29 | + ) |
| 30 | + self.config = kwargs |
| 31 | + self._backbones = get_available_backbones() |
| 32 | + self._heads = get_available_heads() |
| 33 | + self._backbones = get_available_backbones() |
| 34 | + self._heads = get_available_heads() |
| 35 | + |
| 36 | + @staticmethod |
| 37 | + def get_properties(dataset_properties: Optional[Dict[str, str]] = None) -> Dict[str, Any]: |
| 38 | + return { |
| 39 | + "shortname": "BackboneHeadNet", |
| 40 | + "name": "BackboneHeadNet", |
| 41 | + } |
| 42 | + |
| 43 | + @staticmethod |
| 44 | + def get_hyperparameter_search_space(dataset_properties: Optional[Dict[str, str]] = None, |
| 45 | + **kwargs: Any) -> ConfigurationSpace: |
| 46 | + cs = ConfigurationSpace() |
| 47 | + backbones = get_available_backbones() |
| 48 | + heads = get_available_heads() |
| 49 | + |
| 50 | + # filter backbones and heads for those who support the current task type |
| 51 | + task = dataset_properties["task_type"] |
| 52 | + backbones = {name: backbone for name, backbone in backbones.items() if task in backbone.supported_tasks} |
| 53 | + heads = {name: head for name, head in heads.items() if task in head.supported_tasks} |
| 54 | + |
| 55 | + backbone_hp = CategoricalHyperparameter("backbone", choices=backbones.keys()) |
| 56 | + head_hp = CategoricalHyperparameter("head", choices=heads.keys()) |
| 57 | + cs.add_hyperparameters([backbone_hp, head_hp]) |
| 58 | + |
| 59 | + # for each backbone and head, add a conditional search space if this backbone or head is chosen |
| 60 | + for backbone_name in backbones.keys(): |
| 61 | + backbone_cs = backbones[backbone_name].get_hyperparameter_search_space(dataset_properties) |
| 62 | + cs.add_configuration_space(backbone_name, |
| 63 | + backbone_cs, |
| 64 | + parent_hyperparameter={"parent": backbone_hp, "value": backbone_name}) |
| 65 | + |
| 66 | + for head_name in heads.keys(): |
| 67 | + head_cs: ConfigurationSpace = heads[head_name].get_hyperparameter_search_space(dataset_properties) |
| 68 | + cs.add_configuration_space(head_name, |
| 69 | + head_cs, |
| 70 | + parent_hyperparameter={"parent": head_hp, "value": head_name}) |
| 71 | + return cs |
| 72 | + |
| 73 | + def build_network(self, input_shape: Tuple[int, ...], output_shape: Tuple[int, ...]) -> nn.Module: |
| 74 | + """This method returns a pytorch network, that is dynamically built |
| 75 | +
|
| 76 | + a self.config that is network specific, and contains the additional |
| 77 | + configuration hyperparameters to build a domain specific network |
| 78 | + """ |
| 79 | + backbone_name = self.config["backbone"] |
| 80 | + head_name = self.config["head"] |
| 81 | + Backbone = self._backbones[backbone_name] |
| 82 | + Head = self._heads[head_name] |
| 83 | + |
| 84 | + backbone = Backbone(**{k.replace(backbone_name, "").replace(":", ""): v |
| 85 | + for k, v in self.config.items() if |
| 86 | + k.startswith(backbone_name)}) |
| 87 | + backbone_module = backbone.build_backbone(input_shape=input_shape) |
| 88 | + backbone_output_shape = backbone.get_output_shape(input_shape=input_shape) |
| 89 | + |
| 90 | + head = Head(**{k.replace(head_name, "").replace(":", ""): v |
| 91 | + for k, v in self.config.items() if |
| 92 | + k.startswith(head_name)}) |
| 93 | + head_module = head.build_head(input_shape=backbone_output_shape, output_shape=output_shape) |
| 94 | + |
| 95 | + return nn.Sequential(backbone_module, head_module) |
| 96 | + |
| 97 | + def __str__(self) -> str: |
| 98 | + """ Allow a nice understanding of what components where used """ |
| 99 | + info = vars(self) |
| 100 | + # Remove unwanted info |
| 101 | + info.pop('network', None) |
| 102 | + info.pop('random_state', None) |
| 103 | + return f"{self.config['backbone']} -> {self.config['head']} ({str(info)})" |
| 104 | + |
| 105 | + |
| 106 | +if __name__ == "__main__": |
| 107 | + cs = BackboneHeadNet.get_hyperparameter_search_space(dataset_properties={"task_type": "tabular_classification"}) |
| 108 | + print(cs) |
| 109 | + sample = cs.sample_configuration() |
| 110 | + bnet = BackboneHeadNet(**sample) |
| 111 | + print(bnet) |
| 112 | + net = BackboneHeadNet(**sample).build_network(**{"input_shape": (10,), "output_shape": (10,)}) |
0 commit comments