-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathscenarioGenerator.py
67 lines (52 loc) · 2.38 KB
/
scenarioGenerator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import pandas as pd
import numpy as np
from sklearn.linear_model import LassoCV
from sklearn.preprocessing import PolynomialFeatures
import holidays
class SolarRegression(LassoCV):
poly = PolynomialFeatures(degree=2, interaction_only=False, include_bias=False)
def getX(self, datetime):
X = (pd.DataFrame()
.assign(sy1=lambda x: np.sin(2 * np.pi * datetime.dayofyear / 365.25))
.assign(cy1=lambda x: np.cos(2 * np.pi * datetime.dayofyear / 365.25))
.join(pd.get_dummies(datetime.hour))
)
return self.poly.fit_transform(X)
def fit(self, datetime, y):
super().fit(self.getX(datetime), y)
def score(self, datetime, y):
return super().score(self.getX(datetime), y)
def predict(self, datetime):
return super().predict(self.getX(datetime))
class WindRegression(SolarRegression):
def getX(self, datetime):
X = (pd.DataFrame(index=datetime)
.assign(sy1=lambda x: np.sin(2 * np.pi * datetime.dayofyear / 365.25))
.assign(cy1=lambda x: np.cos(2 * np.pi * datetime.dayofyear / 365.25))
)
return self.poly.fit_transform(X)
class TemperatureRegression(SolarRegression):
def getX(self, datetime):
X = (pd.DataFrame(index=datetime)
.assign(sy1=lambda x: np.sin(2 * np.pi * datetime.dayofyear / 365.25))
.assign(cy1=lambda x: np.cos(2 * np.pi * datetime.dayofyear / 365.25))
)
return self.poly.fit_transform(X)
class RorRegression(SolarRegression):
def getX(self, datetime):
X = (pd.DataFrame(index=datetime)
.assign(sy1=lambda x: np.sin(2 * np.pi * datetime.dayofyear / 365.25))
.assign(cy1=lambda x: np.cos(2 * np.pi * datetime.dayofyear / 365.25))
)
return self.poly.fit_transform(X)
class DemandRegression(SolarRegression):
holidays = holidays.Spain()
def getX(self, datetime):
X = (pd.DataFrame()
.assign(holiday=pd.Series(datetime).apply(lambda x: 1 if x in self.holidays else 0))
.assign(sy1=lambda x: np.sin(2 * np.pi * datetime.dayofyear / 365.25))
.assign(cy1=lambda x: np.cos(2 * np.pi * datetime.dayofyear / 365.25))
.join(pd.get_dummies(datetime.hour))
.join(pd.get_dummies(datetime.day_name()))
)
return self.poly.fit_transform(X)