-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathImmunityTestingMain.py
478 lines (401 loc) · 15.6 KB
/
ImmunityTestingMain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
import gc
import torch.nn as nn
import torchvision.transforms as transforms
import numpy as np
import torch
import torch.optim as optim
from ImmunityTestingFunction import TargetX_Immunity_Testing, targetFGSM_Immunity_Testing, targetUAP_Immunity_Testing
import torchvision.models as models
from PIL import Image
from TargetX import targetx_arg, targetx_return_I_array
import os
import glob
import random
import art
#Check if cuda is available.
is_cuda = torch.cuda.is_available()
device = 'cpu'
#If cuda is available use GPU for faster processing, if not, use CPU.
if is_cuda:
print("Using GPU")
device = 'cuda:0'
else:
print("Using CPU")
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
global new_fk
# Define the network to be finetuned and use to train
anet = models.alexnet(pretrained=True)
gnet = models.googlenet(pretrained=True)
rnet_34 = models.resnet34(pretrained=True)
rnet_101 = models.resnet101(pretrained=True)
# Put network on GPU
if is_cuda:
anet.cuda()
gnet.cuda()
rnet_34.cuda()
rnet_101.cuda()
# Set network to evaluation mode
anet.eval()
gnet.eval()
rnet_34.eval()
rnet_101.eval()
# for testing different models
# net = anet
# net = gnet
net = rnet_34
# net = rnet_101
ILSVRClabels = open(os.path.join('ILSVRC2012validation.txt'), 'r').read().split('\n')
# Define networks to be finetuned for each approach, load them into the GPU, and set them all in training mode
# TARGET-X AlexNet
targetX_anet_0005 = models.alexnet(pretrained=True)
targetX_anet_0005.cuda()
targetX_anet_0005.eval()
targetX_anet_05 = models.alexnet(pretrained=True)
targetX_anet_05.cuda()
targetX_anet_05.eval()
targetX_anet_2 = models.alexnet(pretrained=True)
targetX_anet_2.cuda()
targetX_anet_2.eval()
# TARGET-X GoogleNet
targetX_gnet_0005 = models.googlenet(pretrained=True)
targetX_gnet_0005.cuda()
targetX_gnet_0005.eval()
targetX_gnet_05 = models.googlenet(pretrained=True)
targetX_gnet_05.cuda()
targetX_gnet_05.eval()
targetX_gnet_2 = models.googlenet(pretrained=True)
targetX_gnet_2.cuda()
targetX_gnet_2.eval()
# TARGET-X ResNet-34
targetX_rnet_34_0005 = models.resnet34(pretrained=True)
targetX_rnet_34_0005.cuda()
targetX_rnet_34_0005.eval()
targetX_rnet_34_05 = models.resnet34(pretrained=True)
targetX_rnet_34_05.cuda()
targetX_rnet_34_05.eval()
targetX_rnet_34_2 = models.resnet34(pretrained=True)
targetX_rnet_34_2.cuda()
targetX_rnet_34_2.eval()
# TARGET-X ResNet-101
targetX_rnet_101_0005 = models.resnet101(pretrained=True)
targetX_rnet_101_0005.cuda()
targetX_rnet_101_0005.eval()
targetX_rnet_101_05 = models.resnet101(pretrained=True)
targetX_rnet_101_05.cuda()
targetX_rnet_101_05.eval()
targetX_rnet_101_2 = models.resnet101(pretrained=True)
targetX_rnet_101_2.cuda()
targetX_rnet_101_2.eval()
# TARGET-FGSM AlexNet
targetfgsm_anet_0005 = models.alexnet(pretrained=True)
targetfgsm_anet_0005.cuda()
targetfgsm_anet_0005.eval()
targetfgsm_anet_05 = models.alexnet(pretrained=True)
targetfgsm_anet_05.cuda()
targetfgsm_anet_05.eval()
targetfgsm_anet_2 = models.alexnet(pretrained=True)
targetfgsm_anet_2.cuda()
targetfgsm_anet_2.eval()
# TARGET-FGSM GoogleNet
targetfgsm_gnet_0005 = models.googlenet(pretrained=True)
targetfgsm_gnet_0005.cuda()
targetfgsm_gnet_0005.eval()
targetfgsm_gnet_05 = models.googlenet(pretrained=True)
targetfgsm_gnet_05.cuda()
targetfgsm_gnet_05.eval()
targetfgsm_gnet_2 = models.googlenet(pretrained=True)
targetfgsm_gnet_2.cuda()
targetfgsm_gnet_2.eval()
# TARGET-FGSM ResNet-34
targetfgsm_rnet_34_0005 = models.resnet34(pretrained=True)
targetfgsm_rnet_34_0005.cuda()
targetfgsm_rnet_34_0005.eval()
targetfgsm_rnet_34_05 = models.resnet34(pretrained=True)
targetfgsm_rnet_34_05.cuda()
targetfgsm_rnet_34_05.eval()
targetfgsm_rnet_34_2 = models.resnet34(pretrained=True)
targetfgsm_rnet_34_2.cuda()
targetfgsm_rnet_34_2.eval()
# TARGET-FGSM ResNet-101
targetfgsm_rnet_101_0005 = models.resnet101(pretrained=True)
targetfgsm_rnet_101_0005.cuda()
targetfgsm_rnet_101_0005.eval()
targetfgsm_rnet_101_05 = models.resnet101(pretrained=True)
targetfgsm_rnet_101_05.cuda()
targetfgsm_rnet_101_05.eval()
targetfgsm_rnet_101_2 = models.resnet101(pretrained=True)
targetfgsm_rnet_101_2.cuda()
targetfgsm_rnet_101_2.eval()
# TARGET-UAP AlexNet
targetuap_anet_0005 = models.alexnet(pretrained=True)
targetuap_anet_0005.cuda()
targetuap_anet_0005.eval()
targetuap_anet_05 = models.alexnet(pretrained=True)
targetuap_anet_05.cuda()
targetuap_anet_05.eval()
targetuap_anet_2 = models.alexnet(pretrained=True)
targetuap_anet_2.cuda()
targetuap_anet_2.eval()
# TARGET-UAP GoogleNet
targetuap_gnet_0005 = models.googlenet(pretrained=True)
targetuap_gnet_0005.cuda()
targetuap_gnet_0005.eval()
targetuap_gnet_05 = models.googlenet(pretrained=True)
targetuap_gnet_05.cuda()
targetuap_gnet_05.eval()
targetuap_gnet_2 = models.googlenet(pretrained=True)
targetuap_gnet_2.cuda()
targetuap_gnet_2.eval()
# TARGET-UAP ResNet-34
targetuap_rnet_34_0005 = models.resnet34(pretrained=True)
targetuap_rnet_34_0005.cuda()
targetuap_rnet_34_0005.eval()
targetuap_rnet_34_05 = models.resnet34(pretrained=True)
targetuap_rnet_34_05.cuda()
targetuap_rnet_34_05.eval()
targetuap_rnet_34_2 = models.resnet34(pretrained=True)
targetuap_rnet_34_2.cuda()
targetuap_rnet_34_2.eval()
# TARGET-UAP ResNet-101
targetuap_rnet_101_0005 = models.resnet101(pretrained=True)
targetuap_rnet_101_0005.cuda()
targetuap_rnet_101_0005.eval()
targetuap_rnet_101_05 = models.resnet101(pretrained=True)
targetuap_rnet_101_05.cuda()
targetuap_rnet_101_05.eval()
targetuap_rnet_101_2 = models.resnet101(pretrained=True)
targetuap_rnet_101_2.cuda()
targetuap_rnet_101_2.eval()
def TargetX_Immunity_Training(orig_net, immune_net, name, eps):
if is_cuda:
immune_net.cuda()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(immune_net.parameters(), lr=1e-5)
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
for epoch in range(5):
if epoch != 0:
PATH = './targetX_adv_net' + name + str(epoch) + '.pth'
torch.save(immune_net.state_dict(), PATH)
immune_net.eval()
csv = 'targetX' + name + 'immunityepoch' + str(epoch) + str(eps) + '.csv'
TargetX_Immunity_Testing(net, immune_net, eps, csv)
immune_net.train()
running_loss = 0.0
i = 0
counter = 0
for filename in glob.glob('D:/Imagenet/ILSVRC2012/ILSVRC/Data/CLS-LOC/val/*.JPEG'):
if counter == 5000:
break
im_orig = Image.open(filename).convert('RGB')
im = transforms.Compose([
transforms.Scale(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std)])(im_orig)
# generate a random label id for the targeted algorithm from [0-999]
n = random.randint(0, 999)
# prints label to validate with alg
print(n)
# returns the 10 nearest labels for the image
I = targetx_return_I_array(im, orig_net, 10)
print(I)
# label to exclude from choice
exclude_label = I[0]
# chooses a random int in the I array
inputNum = random.choice(I)
if inputNum == exclude_label:
print("target label same as original label")
inputNum = random.choice(I)
r, loop_i, label_orig, label_pert, pert_image, newf_k = targetx_arg(im, orig_net, inputNum, eps)
inputs = pert_image
labels = ILSVRClabels[np.int(counter)].split(' ')[1]
labels = torch.tensor([int(labels)])
labels = labels.to('cuda')
# zero the param gradients
optimizer.zero_grad()
# forward and backward propagation and then optimization
outputs = immune_net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# printing the statistics
running_loss += loss.item()
# prints every 2000 mini-batches
if i % 2000 == 1999:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
i = i + 1
counter = counter + 1
print('Finished Training')
PATH = 'targetX_adv_net' + str(eps) + name + '.csv'
torch.save(immune_net.state_dict(), PATH)
return immune_net
def TargetFGSM_Immunity_Training(orig_net, immune_net, name, eps):
if is_cuda:
immune_net.cuda()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(immune_net.parameters(), lr=1e-5)
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(orig_net.parameters(), lr=0.01)
classifier = art.estimators.classification.PyTorchClassifier(
model=orig_net,
input_shape=(3, 224, 224),
loss=criterion,
optimizer=optimizer,
nb_classes=1000
)
for epoch in range(5):
if epoch != 0 :
PATH = './targetFGSM_adv_net' + name + str(epoch) + '.pth'
torch.save(immune_net.state_dict(), PATH)
immune_net.eval()
csv = 'targetFGSM' + name + 'immunityepoch' + str(epoch) + str(eps) + '.csv'
targetFGSM_Immunity_Testing(net, immune_net, eps, csv)
immune_net.train()
running_loss = 0.0
i = 0
counter = 0
for filename in glob.glob('D:/Imagenet/ILSVRC2012/ILSVRC/Data/CLS-LOC/val/*.JPEG'):
if counter == 5000:
break
im_orig = Image.open(filename).convert('RGB')
im = transforms.Compose([
transforms.Scale(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std)])(im_orig)
I = targetx_return_I_array(im, orig_net, 10)
print(I)
# label to exclude from choice
exclude_label = I[0]
# chooses a random int in the I array
inputNum = random.choice(I)
if inputNum == exclude_label:
print("target label same as original label")
inputNum = random.choice(I)
targetLabel = np.array([])
targetLabel = np.append(targetLabel, inputNum)
input_batch = im.unsqueeze(0)
result = classifier.predict(input_batch, 1, False)
label_orig = np.argmax(result.flatten())
labels = open(os.path.join('synset_words.txt'), 'r').read().split('\n')
attack = art.attacks.evasion.FastGradientMethod(estimator=classifier, eps=eps, norm=np.inf, targeted=True)
input_array = input_batch.numpy()
img_adv = attack.generate(x=input_array, y=targetLabel)
result_adv = classifier.predict(img_adv, 1, False)
label_pert = np.argmax(result_adv.flatten())
inputs = result_adv
labels = ILSVRClabels[np.int(counter)].split(' ')[1]
labels = torch.tensor([int(labels)])
labels = labels.to('cuda')
# zero the param gradients
optimizer.zero_grad()
# forward and backward propagation and then optimization
outputs = immune_net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# printing the statistics
running_loss += loss.item()
# prints every 2000 mini-batches
if i % 2000 == 1999:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
i = i + 1
counter = counter + 1
print("Finished Training")
PATH = 'targetFGSM_adv_net' + str(eps) + name + '.csv'
torch.save(immune_net.state_dict(), PATH)
return immune_net
def TargetUAP_Immunity_Training(orig_net, immune_net, name, eps):
if is_cuda:
immune_net.cuda()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(immune_net.parameters(), lr=1e-5)
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(orig_net.parameters(), lr=0.01)
classifier = art.estimators.classification.PyTorchClassifier(
model=orig_net,
input_shape=(3, 224, 224),
loss=criterion,
optimizer=optimizer,
nb_classes=1000
)
for epoch in range(5):
if epoch != 0 :
PATH = './targetUAP_adv_net' + name + str(epoch) + '.pth'
torch.save(immune_net.state_dict(), PATH)
immune_net.eval()
csv = 'targetUAP' + name + 'immunityepoch' + str(epoch) + str(eps) + '.csv'
targetUAP_Immunity_Testing(net, immune_net, eps, csv)
immune_net.train()
running_loss = 0.0
i = 0
counter = 0
for filename in glob.glob('D:/Imagenet/ILSVRC2012/ILSVRC/Data/CLS-LOC/val/*.JPEG'):
if counter == 5000:
break
im_orig = Image.open(filename).convert('RGB')
im = transforms.Compose([
transforms.Scale(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std)])(im_orig)
I = targetx_return_I_array(im, orig_net, 10)
print(I)
# label to exclude from choice
exclude_label = I[0]
# chooses a random int in the I array
inputNum = random.choice(I)
if inputNum == exclude_label:
print("target label same as original label")
inputNum = random.choice(I)
targetLabel = np.array([])
targetLabel = np.append(targetLabel, inputNum)
input_batch = im.unsqueeze(0)
result = classifier.predict(input_batch, 1, False)
label_orig = np.argmax(result.flatten())
labels = open(os.path.join('synset_words.txt'), 'r').read().split('\n')
attack = art.attacks.evasion.TargetedUniversalPerturbation(classifier=classifier, attacker='fgsm', eps=eps)
input_array = input_batch.numpy()
img_adv = attack.generate(x=input_array, y=targetLabel)
result_adv = classifier.predict(img_adv, 1, False)
label_pert = np.argmax(result_adv.flatten())
inputs = result_adv
labels = ILSVRClabels[np.int(counter)].split(' ')[1]
labels = torch.tensor([int(labels)])
labels = labels.to('cuda')
# zero the param gradients
optimizer.zero_grad()
# forward and backward propagation and then optimization
outputs = immune_net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# printing the statistics
running_loss += loss.item()
# prints every 2000 mini-batches
if i % 2000 == 1999:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
i = i + 1
counter = counter + 1
gc.collect()
torch.cuda.empty_cache()
print("Finished Training")
PATH = 'targetUAP_adv_net' + str(eps) + name + '.csv'
torch.save(immune_net.state_dict(), PATH)
return immune_net
# Call functions for training and testing
# AlexNet
targetuap_anet_0005_test = TargetUAP_Immunity_Training(anet, targetuap_anet_0005, 'alexnet', 0.0005)
targetuap_anet_0005_test.eval()
gc.collect()
torch.cuda.empty_cache()
targetUAP_Immunity_Testing(anet, targetuap_anet_0005_test, 0.0005, 'TargetUAP_alexnet_Immunity_Finished_0.0005.csv')