From f56b6ee03cf4d1ab6e156de8b43a2bc577e41aa4 Mon Sep 17 00:00:00 2001 From: "Santiago L. Valdarrama" Date: Tue, 26 Mar 2024 15:51:24 -0400 Subject: [PATCH] Reviewed session 9 and 10 --- program/cohort.ipynb | 111 ++++++++++++++++++++++--------------------- 1 file changed, 56 insertions(+), 55 deletions(-) diff --git a/program/cohort.ipynb b/program/cohort.ipynb index 91a0293..77e694a 100644 --- a/program/cohort.ipynb +++ b/program/cohort.ipynb @@ -33732,7 +33732,7 @@ }, { "cell_type": "code", - "execution_count": 429, + "execution_count": 494, "id": "f70bcd33-b499-4e2b-953e-94d1ed96c10a", "metadata": { "tags": [ @@ -33740,13 +33740,34 @@ ] }, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:sagemaker.image_uris:image_uri is not presented, retrieving image_uri based on instance_type, framework etc.\n", + "INFO:sagemaker.processing:Uploaded None to s3://mlschool/session9-pipeline/code/c90fe2477ad62c58fbc0c004cc5ab07f/sourcedir.tar.gz\n", + "INFO:sagemaker.processing:runproc.sh uploaded to s3://mlschool/session9-pipeline/code/f3b7867d7495763812a03744135acb08/runproc.sh\n", + "/Users/svpino/dev/ml.school/.venv/lib/python3.10/site-packages/sagemaker/workflow/pipeline_context.py:332: UserWarning: Running within a PipelineSession, there will be No Wait, No Logs, and No Job being started.\n", + " warnings.warn(\n", + "INFO:sagemaker.image_uris:image_uri is not presented, retrieving image_uri based on instance_type, framework etc.\n", + "INFO:sagemaker.processing:Uploaded None to s3://mlschool/session9-pipeline/code/c90fe2477ad62c58fbc0c004cc5ab07f/sourcedir.tar.gz\n", + "INFO:sagemaker.processing:runproc.sh uploaded to s3://mlschool/session9-pipeline/code/f3b7867d7495763812a03744135acb08/runproc.sh\n" + ] + }, { "data": { "text/plain": [ - "{'PipelineArn': 'session9-pipeline'}" + "{'PipelineArn': 'arn:aws:sagemaker:us-east-1:325223348818:pipeline/session9-pipeline',\n", + " 'ResponseMetadata': {'RequestId': '1da54e45-294d-4d80-889d-1c94aa4cc9da',\n", + " 'HTTPStatusCode': 200,\n", + " 'HTTPHeaders': {'x-amzn-requestid': '1da54e45-294d-4d80-889d-1c94aa4cc9da',\n", + " 'content-type': 'application/x-amz-json-1.1',\n", + " 'content-length': '85',\n", + " 'date': 'Tue, 26 Mar 2024 19:30:16 GMT'},\n", + " 'RetryAttempts': 0}}" ] }, - "execution_count": 429, + "execution_count": 494, "metadata": {}, "output_type": "execute_result" } @@ -33779,7 +33800,7 @@ "\n", " \"High-level\n", "\n", - "Keep in mind that, while good for development and testing, this approach is not the best approach for production systems.\n" + "Keep in mind that, while good for development and testing, this is not the best approach for production systems.\n" ] }, { @@ -33794,7 +33815,7 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 496, "id": "a67726d7", "metadata": {}, "outputs": [ @@ -33802,14 +33823,14 @@ "data": { "text/plain": [ "{'ModelPackageGroupName': 'basic-penguins',\n", - " 'ModelPackageVersion': 2,\n", - " 'ModelPackageArn': 'arn:aws:sagemaker:us-east-1:325223348818:model-package/basic-penguins/2',\n", - " 'CreationTime': datetime.datetime(2024, 3, 16, 9, 59, 29, 161000, tzinfo=tzlocal()),\n", + " 'ModelPackageVersion': 4,\n", + " 'ModelPackageArn': 'arn:aws:sagemaker:us-east-1:325223348818:model-package/basic-penguins/4',\n", + " 'CreationTime': datetime.datetime(2024, 3, 26, 15, 43, 59, 510000, tzinfo=tzlocal()),\n", " 'ModelPackageStatus': 'Completed',\n", " 'ModelApprovalStatus': 'Approved'}" ] }, - "execution_count": 64, + "execution_count": 496, "metadata": {}, "output_type": "execute_result" } @@ -33838,14 +33859,20 @@ "source": [ "### Step 2 - Downloading the Model\n", "\n", - "Let's now download the model assets from the location specified in the Model Registry to your local environment.\n", - "\n", + "Let's now download the model assets from the location specified in the Model Registry to your local environment.\n" + ] + }, + { + "cell_type": "markdown", + "id": "e2891178", + "metadata": {}, + "source": [ "We will store this model in a folder called `serving`:\n" ] }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 497, "id": "f2e94adc", "metadata": {}, "outputs": [], @@ -33863,7 +33890,7 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 498, "id": "bd12fbe9", "metadata": {}, "outputs": [], @@ -33893,7 +33920,7 @@ }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 499, "id": "c79a0e74", "metadata": { "tags": [ @@ -33905,14 +33932,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "Overwriting code/serving/app.py\n" + "Writing code/serving/app.py\n" ] } ], "source": [ "%%writefile {CODE_FOLDER}/serving/app.py\n", - "#| filename: app.py\n", - "#| code-line-numbers: true\n", + "# | filename: app.py\n", + "# | code-line-numbers: true\n", "\n", "import tarfile\n", "import tempfile\n", @@ -33943,10 +33970,7 @@ " with tarfile.open(MODEL_PATH / \"model.tar.gz\") as tar:\n", " tar.extractall(path=directory)\n", "\n", - " Model.model = keras.models.load_model(\n", - " Path(directory) / \"001\"\n", - " )\n", - "\n", + " Model.model = keras.models.load_model(Path(directory) / \"001\")\n", "\n", " def predict(self, data):\n", " \"\"\"\n", @@ -33972,10 +33996,7 @@ " prediction = int(np.argmax(predictions[0], axis=-1))\n", " confidence = float(predictions[0][prediction])\n", "\n", - " return jsonify({\n", - " \"prediction\": prediction, \n", - " \"confidence\": confidence\n", - " })\n" + " return jsonify({\"prediction\": prediction, \"confidence\": confidence})" ] }, { @@ -33985,9 +34006,7 @@ "source": [ "### Step 4 - Running the Flask Application\n", "\n", - "We can now run the Flask application to serve the model from a terminal or directly from this notebook.\n", - "\n", - "To run the server from the terminal, use the following command:\n", + "We can now run the Flask application to serve the model from a terminal using the following command:\n", "\n", "```bash\n", "$ flask --app program/code/serving/app.py --debug run --host=0.0.0.0 --port=4242\n", @@ -38836,7 +38855,7 @@ }, { "cell_type": "code", - "execution_count": 430, + "execution_count": 495, "id": "59d1e634", "metadata": { "tags": [ @@ -38845,32 +38864,14 @@ }, "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:sagemaker.processing:Uploaded None to s3://mlschool/session9-pipeline/code/e29b54bb3fdd20910fddd04762820c7e/sourcedir.tar.gz\n", - "INFO:sagemaker.processing:runproc.sh uploaded to s3://mlschool/session9-pipeline/code/f3b7867d7495763812a03744135acb08/runproc.sh\n", - "/Users/svpino/dev/ml.school/.venv/lib/python3.10/site-packages/sagemaker/workflow/pipeline_context.py:332: UserWarning: Running within a PipelineSession, there will be No Wait, No Logs, and No Job being started.\n", - " warnings.warn(\n", - "WARNING:sagemaker.workflow._utils:Popping out 'CertifyForMarketplace' from the pipeline definition since it will be overridden in pipeline execution time.\n" - ] - }, - { - "ename": "ClientError", - "evalue": "An error occurred (ValidationException) when calling the start_pipeline_execution operation: Step type RegisterModel is not supported in local mode.", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mClientError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[430], line 6\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# %%script false --no-raise-error\u001b[39;00m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;66;03m# | eval: false\u001b[39;00m\n\u001b[1;32m 3\u001b[0m \u001b[38;5;66;03m# | code: true\u001b[39;00m\n\u001b[1;32m 4\u001b[0m \u001b[38;5;66;03m# | output: false\u001b[39;00m\n\u001b[0;32m----> 6\u001b[0m \u001b[43msession9_pipeline\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstart\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/dev/ml.school/.venv/lib/python3.10/site-packages/sagemaker/workflow/pipeline.py:372\u001b[0m, in \u001b[0;36mPipeline.start\u001b[0;34m(self, parameters, execution_display_name, execution_description, parallelism_config, selective_execution_config)\u001b[0m\n\u001b[1;32m 370\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msagemaker_session\u001b[38;5;241m.\u001b[39mlocal_mode:\n\u001b[1;32m 371\u001b[0m update_args(kwargs, PipelineParameters\u001b[38;5;241m=\u001b[39mparameters)\n\u001b[0;32m--> 372\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msagemaker_session\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msagemaker_client\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstart_pipeline_execution\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 373\u001b[0m update_args(kwargs, PipelineParameters\u001b[38;5;241m=\u001b[39mformat_start_parameters(parameters))\n\u001b[1;32m 375\u001b[0m \u001b[38;5;66;03m# retry on AccessDeniedException to cover case of tag propagation delay\u001b[39;00m\n", - "File \u001b[0;32m~/dev/ml.school/.venv/lib/python3.10/site-packages/sagemaker/local/local_session.py:535\u001b[0m, in \u001b[0;36mLocalSagemakerClient.start_pipeline_execution\u001b[0;34m(self, PipelineName, **kwargs)\u001b[0m\n\u001b[1;32m 528\u001b[0m error_response \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m 529\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mError\u001b[39m\u001b[38;5;124m\"\u001b[39m: {\n\u001b[1;32m 530\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCode\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mResourceNotFound\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 531\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMessage\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mPipeline \u001b[39m\u001b[38;5;132;01m{}\u001b[39;00m\u001b[38;5;124m does not exist\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mformat(PipelineName),\n\u001b[1;32m 532\u001b[0m }\n\u001b[1;32m 533\u001b[0m }\n\u001b[1;32m 534\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m ClientError(error_response, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstart_pipeline_execution\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 535\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mLocalSagemakerClient\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_pipelines\u001b[49m\u001b[43m[\u001b[49m\u001b[43mPipelineName\u001b[49m\u001b[43m]\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstart\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/dev/ml.school/.venv/lib/python3.10/site-packages/sagemaker/local/entities.py:678\u001b[0m, in \u001b[0;36m_LocalPipeline.start\u001b[0;34m(self, **kwargs)\u001b[0m\n\u001b[1;32m 675\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msagemaker\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mlocal\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpipeline\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m LocalPipelineExecutor\n\u001b[1;32m 677\u001b[0m execution_id \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mstr\u001b[39m(uuid4())\n\u001b[0;32m--> 678\u001b[0m execution \u001b[38;5;241m=\u001b[39m \u001b[43m_LocalPipelineExecution\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 679\u001b[0m \u001b[43m \u001b[49m\u001b[43mexecution_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mexecution_id\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 680\u001b[0m \u001b[43m \u001b[49m\u001b[43mpipeline\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpipeline\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 681\u001b[0m \u001b[43m \u001b[49m\u001b[43mlocal_session\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlocal_session\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 682\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 683\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 685\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_executions[execution_id] \u001b[38;5;241m=\u001b[39m execution\n\u001b[1;32m 686\u001b[0m logger\u001b[38;5;241m.\u001b[39minfo(\n\u001b[1;32m 687\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mStarting execution for pipeline \u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m. Execution ID is \u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 688\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpipeline\u001b[38;5;241m.\u001b[39mname,\n\u001b[1;32m 689\u001b[0m execution_id,\n\u001b[1;32m 690\u001b[0m )\n", - "File \u001b[0;32m~/dev/ml.school/.venv/lib/python3.10/site-packages/sagemaker/local/entities.py:722\u001b[0m, in \u001b[0;36m_LocalPipelineExecution.__init__\u001b[0;34m(self, execution_id, pipeline, PipelineParameters, PipelineExecutionDescription, PipelineExecutionDisplayName, local_session)\u001b[0m\n\u001b[1;32m 720\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstep_execution \u001b[38;5;241m=\u001b[39m {}\n\u001b[1;32m 721\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpipeline_dag \u001b[38;5;241m=\u001b[39m PipelineGraph\u001b[38;5;241m.\u001b[39mfrom_pipeline(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpipeline)\n\u001b[0;32m--> 722\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_initialize_step_execution\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpipeline_dag\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstep_map\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mvalues\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 723\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpipeline_parameters \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_initialize_and_validate_parameters(PipelineParameters)\n\u001b[1;32m 724\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_blocked_steps \u001b[38;5;241m=\u001b[39m {}\n", - "File \u001b[0;32m~/dev/ml.school/.venv/lib/python3.10/site-packages/sagemaker/local/entities.py:828\u001b[0m, in \u001b[0;36m_LocalPipelineExecution._initialize_step_execution\u001b[0;34m(self, steps)\u001b[0m\n\u001b[1;32m 824\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstep_execution[step\u001b[38;5;241m.\u001b[39mname] \u001b[38;5;241m=\u001b[39m _LocalPipelineExecutionStep(\n\u001b[1;32m 825\u001b[0m step\u001b[38;5;241m.\u001b[39mname, step\u001b[38;5;241m.\u001b[39mstep_type, step\u001b[38;5;241m.\u001b[39mdescription, step\u001b[38;5;241m.\u001b[39mdisplay_name\n\u001b[1;32m 826\u001b[0m )\n\u001b[1;32m 827\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m step\u001b[38;5;241m.\u001b[39mstep_type \u001b[38;5;241m==\u001b[39m StepTypeEnum\u001b[38;5;241m.\u001b[39mCONDITION:\n\u001b[0;32m--> 828\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_initialize_step_execution\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstep\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mif_steps\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mstep\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43melse_steps\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/dev/ml.school/.venv/lib/python3.10/site-packages/sagemaker/local/entities.py:823\u001b[0m, in \u001b[0;36m_LocalPipelineExecution._initialize_step_execution\u001b[0;34m(self, steps)\u001b[0m\n\u001b[1;32m 819\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m step\u001b[38;5;241m.\u001b[39mstep_type \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m supported_steps_types:\n\u001b[1;32m 820\u001b[0m error_msg \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_construct_validation_exception_message(\n\u001b[1;32m 821\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mStep type \u001b[39m\u001b[38;5;132;01m{}\u001b[39;00m\u001b[38;5;124m is not supported in local mode.\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mformat(step\u001b[38;5;241m.\u001b[39mstep_type\u001b[38;5;241m.\u001b[39mvalue)\n\u001b[1;32m 822\u001b[0m )\n\u001b[0;32m--> 823\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m ClientError(error_msg, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstart_pipeline_execution\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 824\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstep_execution[step\u001b[38;5;241m.\u001b[39mname] \u001b[38;5;241m=\u001b[39m _LocalPipelineExecutionStep(\n\u001b[1;32m 825\u001b[0m step\u001b[38;5;241m.\u001b[39mname, step\u001b[38;5;241m.\u001b[39mstep_type, step\u001b[38;5;241m.\u001b[39mdescription, step\u001b[38;5;241m.\u001b[39mdisplay_name\n\u001b[1;32m 826\u001b[0m )\n\u001b[1;32m 827\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m step\u001b[38;5;241m.\u001b[39mstep_type \u001b[38;5;241m==\u001b[39m StepTypeEnum\u001b[38;5;241m.\u001b[39mCONDITION:\n", - "\u001b[0;31mClientError\u001b[0m: An error occurred (ValidationException) when calling the start_pipeline_execution operation: Step type RegisterModel is not supported in local mode." - ] + "data": { + "text/plain": [ + "_PipelineExecution(arn='arn:aws:sagemaker:us-east-1:325223348818:pipeline/session9-pipeline/execution/cpqzzpyrpzy2', sagemaker_session=)" + ] + }, + "execution_count": 495, + "metadata": {}, + "output_type": "execute_result" } ], "source": [