A machine learning project to detect botnet-infected network traffic.
Trained on the CTU-13 dataset and built using Python.
- Clean & preprocess CTU-13 botnet data
- Train a Random Forest model
- Predict botnet traffic from test files
- Interactive Streamlit dashboard
- Clone the repo
git clone https://github.com/Krishna9588/Botnet-Detection-using-ML.git
2 Install dependencies
pip install -r requirements.txt
3 Download Dataset
git clone https://github.com/imfaisalmalik/CTU13-CSV-Dataset
cd dataset
In this project I have used CTU-13 Botnet Dataset. Which is available on Git Hub for public use.
- CTU13_Attack_Traffic - Dataset with Bot Attack
- CTU13_Normal_Traffic - Normal User Dataset
- prediction_output - Result dataset
- test_sample - Sample dataset use for getting output
- Preprocess & Training the model
python train_model.py
- Detection
python detector.py
- Dashboard
streamlit run streamlit_app.py
SrcAddr, DstAddr, Proto, TotBytes, ..., Prediction, Prediction_Label
192.168.1.10, 8.8.8.8, TCP, 2400, ..., 0, NORMAL
10.0.0.5, 192.168.1.3, TCP, 5500, ..., 1, BOTNET