###010. Regular Expression Matching
题目: https://leetcode.com/problems/regular-expression-matching/
难度:
Hard
先尝试暴力解法,难点就在 * 身上, * 不会单独出现,它一定是和前面一个字母或"."配成一对。看成一对后"X*",它的性质就是:要不匹配0个,要不匹配连续的“X”.所以尝试暴力解法的时候一个trick是从后往前匹配.
暴力解法居然也能AC?
class Solution(object):
def isMatch(self, s, p):
"""
:type s: str
:type p: str
:rtype: bool
"""
FRONT = -1
def helper(s, i, p, j):
if(j == FRONT):
return (i == FRONT)
if(i == FRONT):
if p[j] != '*':
return False
return helper(s,i,p,j-2)
if(p[j] == '*'):
if(p[j-1] == '.' or p[j-1] == s[i]):
if helper(s, i-1, p, j):
return True
return helper(s,i,p,j-2)
if(p[j] == '.' or p[j] == s[i]):
return helper(s,i-1,p,j-1)
return False
return helper(s, len(s)-1, p, len(p)-1)
是这样来分情况看得:
- 如果s[i] = p[j] 或者 p[j]= . : 往前匹配一位
- 如果p[j] = ' * ', 检查一下,如果这个时候p[j-1] = . 或者p[j-1] = s[i] ,那么就往前匹配,如果这样能匹配过,就return True, 否者我们忽略 ' X* ',这里注意里面的递推关系
- 再处理一下边界状况:
- s已经匹配完了, 如果此时p还有,那么如果剩下的是 X* 这种可以过,所以检查
- p匹配完毕,如果s还有那么报错
dp优化,感觉和edit distance很像。 DP优化待代码化,感觉学DP的一个重点除了递归学好以外,另一点是一定要会画表格。
画一个表格来看一下状况
c * a * b
0 1 2 3 4 5
0 1 0 1 0 1 0
a 1 0 0 0 1 1 0
a 2 0 0 0 0 1 0
b 3 0 0 0 0 0 1
这里有几个取巧/容易出问题的敌方,这里画的表用的是1-based string。一上来,做的事包括:
- 初始化,空字符匹配:dp[0][0] =1
第一行,c* 可以匹配空字符,c* a* 可以匹配空字符,p[j-1] != s[i],匹配空字符
然后进入第二行再来看,实际上我们可以看到,如果没有碰到 * 匹配还是很朴素的,但是碰到 * :
- 1这个匹配可以从左侧传来,dp[i][j] = dp[i][j-1],that is 匹配 1个
- 1 也可以有上方传来,这种情况是p[j-1] = s[i],匹配多个 dp[i][j] = dp[i-1][j]
- 1 这个匹配也可以从间隔一个的左侧传来,that is也可以有个性的匹配0个,如同匹配空字符一样dp[i][j] = dp[i][j-2],但是注意匹配0个实际上有两种状况,如果p[j-1]!=s[i],强制匹配0个,即使p[j-1] == s[i],我们也可以傲娇的用它来匹配0个。
再代码化一点:
- s[i] == p[j] 或者 p[j] == '.' : dp[i][j] = dp[i-1][j-1]
- p[j] == '*': 然后分几种情况
- p[j-1] != s[i] : dp[i][j] = dp[i][j-2] 匹配0个的状况
- p[j-1] == s[i] or p[i-1] == '.':
- dp[i][j] = dp[i-1][j] 匹配多个s[i]
- dp[i][j] = dp[i][j-1] 匹配一个
- dp[i][j] = dp[i][j-2] 匹配0个
AC代码,注意一下,因为上表为了表达方便,用的是1-based string系统,实际写代码的时候我们心里还是清楚这个string还是从0开始的,不过也可以尝试往前面添东西来方便。
AC代码
class Solution(object):
def isMatch(self, s, p):
"""
:type s: str
:type p: str
:rtype: bool
"""
m, n = len(s), len(p)
dp = [ [0 for i in range(n+1)] for j in range(m+1)]
dp[0][0] = 1
# init the first line
for i in range(2,n+1):
if p[i-1] == '*':
dp[0][i] = dp[0][i-2]
for i in range(1,m+1):
for j in range(1,n+1):
if p[j-1] == '*':
if p[j-2] != s[i-1] and p[j-2] != '.':
dp[i][j] = dp[i][j-2]
elif p[j-2] == s[i-1] or p[j-2] == '.':
dp[i][j] = dp[i-1][j] or dp[i][j-1] or dp[i][j-2]
elif s[i-1] == p[j-1] or p[j-1] == '.':
dp[i][j] = dp[i-1][j-1]
return dp[m][n] == 1
参考:
发现自己喜欢这道题目