Skip to content

Add Compiler Plugin support for statistics on GroupBy #1077

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 16 commits into from
Mar 11, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -133,9 +133,12 @@ public fun <T, C : Comparable<C>> DataFrame<T>.maxByOrNull(column: KProperty<C?>
// endregion

// region GroupBy

@Refine
@Interpretable("GroupByMax1")
public fun <T> Grouped<T>.max(): DataFrame<T> = maxFor(interComparableColumns())

@Refine
@Interpretable("GroupByMax0")
public fun <T, C : Comparable<C>> Grouped<T>.maxFor(columns: ColumnsForAggregateSelector<T, C?>): DataFrame<T> =
Aggregators.max.aggregateFor(this, columns)

Expand All @@ -149,6 +152,8 @@ public fun <T, C : Comparable<C>> Grouped<T>.maxFor(vararg columns: ColumnRefere
public fun <T, C : Comparable<C>> Grouped<T>.maxFor(vararg columns: KProperty<C?>): DataFrame<T> =
maxFor { columns.toColumnSet() }

@Refine
@Interpretable("GroupByMax0")
public fun <T, C : Comparable<C>> Grouped<T>.max(name: String? = null, columns: ColumnsSelector<T, C?>): DataFrame<T> =
Aggregators.max.aggregateAll(this, name, columns)

Expand Down
11 changes: 10 additions & 1 deletion core/src/main/kotlin/org/jetbrains/kotlinx/dataframe/api/mean.kt
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,8 @@ import org.jetbrains.kotlinx.dataframe.DataRow
import org.jetbrains.kotlinx.dataframe.RowExpression
import org.jetbrains.kotlinx.dataframe.aggregation.ColumnsForAggregateSelector
import org.jetbrains.kotlinx.dataframe.annotations.AccessApiOverload
import org.jetbrains.kotlinx.dataframe.annotations.Interpretable
import org.jetbrains.kotlinx.dataframe.annotations.Refine
import org.jetbrains.kotlinx.dataframe.columns.ColumnReference
import org.jetbrains.kotlinx.dataframe.columns.toColumnSet
import org.jetbrains.kotlinx.dataframe.columns.toColumnsSetOf
Expand Down Expand Up @@ -98,9 +100,12 @@ public inline fun <T, reified D : Number> DataFrame<T>.meanOf(
// endregion

// region GroupBy

@Refine
@Interpretable("GroupByMean1")
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Let's call it GroupByMeanFor* to distinguish from GroupBy.mean

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Sorry, don't understand, GroupByMeanFor will be under mean/meanFor and GroupByMean0 will be under meanFor at that way.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I suggest GroupByMeanDefault for GroupBy.mean(), GroupByMeanFor for GroupBy.meanFor and GroupByMean for mean

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Ok, agree, will do some renaming/refactoring in next PR in that area

public fun <T> Grouped<T>.mean(skipNA: Boolean = skipNA_default): DataFrame<T> = meanFor(skipNA, numberColumns())

@Refine
@Interpretable("GroupByMean0")
public fun <T, C : Number> Grouped<T>.meanFor(
skipNA: Boolean = skipNA_default,
columns: ColumnsForAggregateSelector<T, C?>,
Expand All @@ -121,6 +126,8 @@ public fun <T, C : Number> Grouped<T>.meanFor(
skipNA: Boolean = skipNA_default,
): DataFrame<T> = meanFor(skipNA) { columns.toColumnSet() }

@Refine
@Interpretable("GroupByMean0")
public fun <T, C : Number> Grouped<T>.mean(
name: String? = null,
skipNA: Boolean = skipNA_default,
Expand All @@ -147,6 +154,8 @@ public fun <T, C : Number> Grouped<T>.mean(
skipNA: Boolean = skipNA_default,
): DataFrame<T> = mean(name, skipNA) { columns.toColumnSet() }

@Refine
@Interpretable("GroupByMeanOf")
public inline fun <T, reified R : Number> Grouped<T>.meanOf(
name: String? = null,
skipNA: Boolean = skipNA_default,
Expand Down
16 changes: 13 additions & 3 deletions core/src/main/kotlin/org/jetbrains/kotlinx/dataframe/api/median.kt
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,8 @@ import org.jetbrains.kotlinx.dataframe.DataRow
import org.jetbrains.kotlinx.dataframe.RowExpression
import org.jetbrains.kotlinx.dataframe.aggregation.ColumnsForAggregateSelector
import org.jetbrains.kotlinx.dataframe.annotations.AccessApiOverload
import org.jetbrains.kotlinx.dataframe.annotations.Interpretable
import org.jetbrains.kotlinx.dataframe.annotations.Refine
import org.jetbrains.kotlinx.dataframe.columns.ColumnReference
import org.jetbrains.kotlinx.dataframe.columns.toColumnSet
import org.jetbrains.kotlinx.dataframe.impl.aggregation.aggregators.Aggregators
Expand All @@ -16,6 +18,7 @@ import org.jetbrains.kotlinx.dataframe.impl.aggregation.interComparableColumns
import org.jetbrains.kotlinx.dataframe.impl.aggregation.modes.aggregateAll
import org.jetbrains.kotlinx.dataframe.impl.aggregation.modes.aggregateFor
import org.jetbrains.kotlinx.dataframe.impl.aggregation.modes.aggregateOf
import org.jetbrains.kotlinx.dataframe.impl.aggregation.modes.aggregateOfDelegated
import org.jetbrains.kotlinx.dataframe.impl.aggregation.modes.of
import org.jetbrains.kotlinx.dataframe.impl.columns.toComparableColumns
import org.jetbrains.kotlinx.dataframe.impl.suggestIfNull
Expand Down Expand Up @@ -103,9 +106,12 @@ public inline fun <T, reified R : Comparable<R>> DataFrame<T>.medianOf(
// endregion

// region GroupBy

@Refine
@Interpretable("GroupByMedian1")
public fun <T> Grouped<T>.median(): DataFrame<T> = medianFor(interComparableColumns())

@Refine
@Interpretable("GroupByMedian0")
public fun <T, C : Comparable<C>> Grouped<T>.medianFor(columns: ColumnsForAggregateSelector<T, C?>): DataFrame<T> =
Aggregators.median.aggregateFor(this, columns)

Expand All @@ -119,6 +125,8 @@ public fun <T, C : Comparable<C>> Grouped<T>.medianFor(vararg columns: ColumnRef
public fun <T, C : Comparable<C>> Grouped<T>.medianFor(vararg columns: KProperty<C?>): DataFrame<T> =
medianFor { columns.toColumnSet() }

@Refine
@Interpretable("GroupByMedian0")
public fun <T, C : Comparable<C>> Grouped<T>.median(
name: String? = null,
columns: ColumnsSelector<T, C?>,
Expand All @@ -137,10 +145,12 @@ public fun <T, C : Comparable<C>> Grouped<T>.median(
public fun <T, C : Comparable<C>> Grouped<T>.median(vararg columns: KProperty<C?>, name: String? = null): DataFrame<T> =
median(name) { columns.toColumnSet() }

@Refine
@Interpretable("GroupByMedianOf")
public inline fun <T, reified R : Comparable<R>> Grouped<T>.medianOf(
name: String? = null,
crossinline expression: RowExpression<T, R?>,
): DataFrame<T> = Aggregators.median.aggregateOf(this, name, expression)
): DataFrame<T> = Aggregators.median.cast<R?>().aggregateOf(this, name, expression)

// endregion

Expand Down Expand Up @@ -227,6 +237,6 @@ public fun <T, C : Comparable<C>> PivotGroupBy<T>.median(vararg columns: KProper

public inline fun <T, reified R : Comparable<R>> PivotGroupBy<T>.medianOf(
crossinline expression: RowExpression<T, R?>,
): DataFrame<T> = Aggregators.median.aggregateOf(this, expression)
): DataFrame<T> = Aggregators.median.cast<R?>().aggregateOf(this, expression)

// endregion
Original file line number Diff line number Diff line change
Expand Up @@ -133,9 +133,12 @@ public fun <T, C : Comparable<C>> DataFrame<T>.minByOrNull(column: KProperty<C?>
// endregion

// region GroupBy

@Refine
@Interpretable("GroupByMin1")
public fun <T> Grouped<T>.min(): DataFrame<T> = minFor(interComparableColumns())

@Refine
@Interpretable("GroupByMin0")
public fun <T, C : Comparable<C>> Grouped<T>.minFor(columns: ColumnsForAggregateSelector<T, C?>): DataFrame<T> =
Aggregators.min.aggregateFor(this, columns)

Expand All @@ -149,6 +152,8 @@ public fun <T, C : Comparable<C>> Grouped<T>.minFor(vararg columns: ColumnRefere
public fun <T, C : Comparable<C>> Grouped<T>.minFor(vararg columns: KProperty<C?>): DataFrame<T> =
minFor { columns.toColumnSet() }

@Refine
@Interpretable("GroupByMin0")
public fun <T, C : Comparable<C>> Grouped<T>.min(name: String? = null, columns: ColumnsSelector<T, C?>): DataFrame<T> =
Aggregators.min.aggregateAll(this, name, columns)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -177,7 +177,7 @@ public inline fun <T, reified R : Comparable<R>> Grouped<T>.percentileOf(
percentile: Double,
name: String? = null,
crossinline expression: RowExpression<T, R?>,
): DataFrame<T> = Aggregators.percentile(percentile).aggregateOf(this, name, expression)
): DataFrame<T> = Aggregators.percentile(percentile).cast<R?>().aggregateOf(this, name, expression)

// endregion

Expand Down Expand Up @@ -289,6 +289,6 @@ public fun <T, C : Comparable<C>> PivotGroupBy<T>.percentile(
public inline fun <T, reified R : Comparable<R>> PivotGroupBy<T>.percentileOf(
percentile: Double,
crossinline expression: RowExpression<T, R?>,
): DataFrame<T> = Aggregators.percentile(percentile).aggregateOf(this, expression)
): DataFrame<T> = Aggregators.percentile(percentile).cast<R?>().aggregateOf(this, expression)

// endregion
13 changes: 12 additions & 1 deletion core/src/main/kotlin/org/jetbrains/kotlinx/dataframe/api/std.kt
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,8 @@ import org.jetbrains.kotlinx.dataframe.DataRow
import org.jetbrains.kotlinx.dataframe.RowExpression
import org.jetbrains.kotlinx.dataframe.aggregation.ColumnsForAggregateSelector
import org.jetbrains.kotlinx.dataframe.annotations.AccessApiOverload
import org.jetbrains.kotlinx.dataframe.annotations.Interpretable
import org.jetbrains.kotlinx.dataframe.annotations.Refine
import org.jetbrains.kotlinx.dataframe.columns.ColumnReference
import org.jetbrains.kotlinx.dataframe.columns.toColumnSet
import org.jetbrains.kotlinx.dataframe.columns.toColumnsSetOf
Expand Down Expand Up @@ -102,10 +104,13 @@ public inline fun <T, reified R : Number> DataFrame<T>.stdOf(
// endregion

// region GroupBy

@Refine
@Interpretable("GroupByStd1")
public fun <T> Grouped<T>.std(skipNA: Boolean = skipNA_default, ddof: Int = ddof_default): DataFrame<T> =
stdFor(skipNA, ddof, numberColumns())

@Refine
@Interpretable("GroupByStd0")
public fun <T> Grouped<T>.stdFor(
skipNA: Boolean = skipNA_default,
ddof: Int = ddof_default,
Expand All @@ -118,6 +123,7 @@ public fun <T> Grouped<T>.stdFor(
ddof: Int = ddof_default,
): DataFrame<T> = stdFor(skipNA, ddof) { columns.toColumnsSetOf() }

@AccessApiOverload
public fun <T, C : Number> Grouped<T>.stdFor(
vararg columns: ColumnReference<C?>,
skipNA: Boolean = skipNA_default,
Expand All @@ -131,13 +137,16 @@ public fun <T, C : Number> Grouped<T>.stdFor(
ddof: Int = ddof_default,
): DataFrame<T> = stdFor(skipNA, ddof) { columns.toColumnSet() }

@Refine
@Interpretable("GroupByStd0")
public fun <T> Grouped<T>.std(
name: String? = null,
skipNA: Boolean = skipNA_default,
ddof: Int = ddof_default,
columns: ColumnsSelector<T, Number?>,
): DataFrame<T> = Aggregators.std(skipNA, ddof).aggregateAll(this, name, columns)

@AccessApiOverload
public fun <T> Grouped<T>.std(
vararg columns: ColumnReference<Number?>,
name: String? = null,
Expand All @@ -160,6 +169,8 @@ public fun <T> Grouped<T>.std(
ddof: Int = ddof_default,
): DataFrame<T> = std(name, skipNA, ddof) { columns.toColumnSet() }

@Refine
@Interpretable("GroupByStdOf")
public inline fun <T, reified R : Number> Grouped<T>.stdOf(
name: String? = null,
skipNA: Boolean = skipNA_default,
Expand Down
11 changes: 10 additions & 1 deletion core/src/main/kotlin/org/jetbrains/kotlinx/dataframe/api/sum.kt
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,8 @@ import org.jetbrains.kotlinx.dataframe.DataRow
import org.jetbrains.kotlinx.dataframe.RowExpression
import org.jetbrains.kotlinx.dataframe.aggregation.ColumnsForAggregateSelector
import org.jetbrains.kotlinx.dataframe.annotations.AccessApiOverload
import org.jetbrains.kotlinx.dataframe.annotations.Interpretable
import org.jetbrains.kotlinx.dataframe.annotations.Refine
import org.jetbrains.kotlinx.dataframe.columns.ColumnReference
import org.jetbrains.kotlinx.dataframe.columns.toColumnSet
import org.jetbrains.kotlinx.dataframe.columns.toColumnsSetOf
Expand Down Expand Up @@ -89,9 +91,12 @@ public inline fun <T, reified C : Number?> DataFrame<T>.sumOf(crossinline expres
// endregion

// region GroupBy

@Refine
@Interpretable("GroupBySum1")
public fun <T> Grouped<T>.sum(): DataFrame<T> = sumFor(numberColumns())

@Refine
@Interpretable("GroupBySum0")
public fun <T, C : Number> Grouped<T>.sumFor(columns: ColumnsForAggregateSelector<T, C?>): DataFrame<T> =
Aggregators.sum.aggregateFor(this, columns)

Expand All @@ -105,6 +110,8 @@ public fun <T, C : Number> Grouped<T>.sumFor(vararg columns: ColumnReference<C?>
public fun <T, C : Number> Grouped<T>.sumFor(vararg columns: KProperty<C?>): DataFrame<T> =
sumFor { columns.toColumnSet() }

@Refine
@Interpretable("GroupBySum0")
public fun <T, C : Number> Grouped<T>.sum(name: String? = null, columns: ColumnsSelector<T, C?>): DataFrame<T> =
Aggregators.sum.aggregateAll(this, name, columns)

Expand All @@ -119,6 +126,8 @@ public fun <T, C : Number> Grouped<T>.sum(vararg columns: ColumnReference<C?>, n
public fun <T, C : Number> Grouped<T>.sum(vararg columns: KProperty<C?>, name: String? = null): DataFrame<T> =
sum(name) { columns.toColumnSet() }

@Refine
@Interpretable("GroupBySumOf")
public inline fun <T, reified R : Number> Grouped<T>.sumOf(
resultName: String? = null,
crossinline expression: RowExpression<T, R?>,
Expand Down
Loading