-
Notifications
You must be signed in to change notification settings - Fork 0
/
cifar10_ddpm_unconditional.py
366 lines (306 loc) · 12.2 KB
/
cifar10_ddpm_unconditional.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import argparse
import math
import os
import random
from copy import deepcopy
from pathlib import Path
import imageio.v2 as imageio
import numpy as np
import torch
import torch as th
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
from torch import Tensor
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.optim import Adam
from torch.utils.data import DataLoader
from torchvision.datasets.cifar import CIFAR10
from torchvision.transforms import Compose, RandomHorizontalFlip, ToTensor
from torchvision.utils import make_grid, save_image
from tqdm import tqdm
from dfusion import DDIMSampler, DDPMSampler, DDPMTrainer, make_beta_schedule
from dfusion.dfusion.diffusion2 import (GaussianDiffusionSampler,
GaussianDiffusionTrainer)
from dfusion.dfusion.karras_sampler import KarrasSampler
from dfusion.models.kitsunetic import UNet
from dfusion.models.kitsunetic.unet2 import UNet as UNet2
from dfusion.utils.common import infinite_dataloader
from dfusion.utils.ema import ema
from dfusion.utils.scheduler import LinearWarmup, WarmupScheduler
from dfusion.utils.score.both import get_inception_and_fid_score
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("result_dir")
parser.add_argument("--eval", action="store_true")
parser.add_argument("--ema", action="store_true")
parser.add_argument("--gpus", type=str, required=True)
parser.add_argument("--batch_size", type=int, default=256)
parser.add_argument("--n_samples", type=int, default=256)
parser.add_argument("--n_samples_eval", type=int, default=50000)
parser.add_argument("--n_steps", type=int, default=400000)
parser.add_argument("--samples_per_steps", type=int, default=10000)
parser.add_argument("--lr", type=float, default=0.0002)
parser.add_argument("--warmup", type=int, default=5000)
parser.add_argument("--n_sample_steps", type=int, default=20)
parser.add_argument("--model_var_type", default="fixed_large")
args = parser.parse_args()
return args
def seed_everything(seed):
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
if torch.cuda.is_available():
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
def model_params(model):
model_size = 0
for param in model.parameters():
if param.requires_grad:
model_size += param.data.nelement()
return model_size
class AverageMeter(object):
def __init__(self):
self.sum = 0
self.cnt = 0
self.avg = 0
def update(self, val, n=1):
if n > 0:
self.sum += val * n
self.cnt += n
self.avg = self.sum / self.cnt
def get(self):
return self.avg
def __call__(self):
return self.avg
def find_free_port():
import socket
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
# Binding to port 0 will cause the OS to find an available port for us
sock.bind(("", 0))
port = sock.getsockname()[1]
sock.close()
# NOTE: there is still a chance the port could be taken by other processes.
return port
def calc_score(ims: Tensor):
"""
### input:
- ims: b 3 h w, cpu
"""
(IS, IS_std), FID = get_inception_and_fid_score(
ims,
fid_cache="results/stats/cifar10.train.npz",
use_torch=False,
verbose=True,
)
return IS, IS_std, FID
def train(args, model: nn.Module, model_ema: nn.Module):
optim = Adam(model.parameters(), lr=args.lr, weight_decay=0.0)
# sched = WarmupScheduler(optim, args.warmup)
sched = LinearWarmup(optim, args.warmup, args.n_steps, 0.05)
betas = make_beta_schedule("linear", 1000)
trainer = DDPMTrainer(betas, loss_type="l2", model_mean_type="eps", model_var_type=args.model_var_type).cuda()
sampler = KarrasSampler(
betas,
n_steps=args.n_sample_steps,
sampler="heun",
clip_denoised=True,
model_var_type=args.model_var_type,
).cuda()
# sampler = DDPMSampler(betas, model_mean_type="eps", model_var_type=args.model_var_type, clip_denoised=True).cuda()
# sampler = DDIMSampler(
# betas,
# ddim_s=20,
# ddim_eta=0.0,
# model_mean_type="eps",
# model_var_type=args.model_var_type,
# clip_denoised=True,
# ).cuda()
# trainer = GaussianDiffusionTrainer(model, 1e-4, 2e-2, 1000).cuda()
# sampler = GaussianDiffusionSampler(model, 1e-4, 2e-2, 1000).cuda()
if args.rankzero:
ds_train = CIFAR10("data/cifar10", train=True, download=True)
ds_train = CIFAR10("data/cifar10", train=True, transform=Compose([RandomHorizontalFlip(), ToTensor()]))
dl_kwargs = dict(batch_size=args.batch_size, num_workers=2, pin_memory=True, persistent_workers=True, drop_last=True)
dl_train = infinite_dataloader(DataLoader(ds_train, shuffle=True, **dl_kwargs), n_steps=args.n_steps)
o = AverageMeter()
with tqdm(total=args.n_steps, ncols=100, disable=not args.rankzero, desc="Train") as pbar:
for step, (im, label) in enumerate(dl_train, 1):
im: Tensor = im.cuda(non_blocking=True) * 2 - 1 # [0, 1] -> [-1, 1]
# label: Tensor = label.cuda(non_blocking=True)
optim.zero_grad()
losses = trainer(model, im)
loss = losses["loss"].mean()
# loss = trainer(im).mean()
loss.backward()
nn.utils.clip_grad.clip_grad_norm_(model.parameters(), 1.0)
optim.step()
sched.step()
if args.ddp:
ema(model.module, model_ema, 0.9999)
else:
ema(model, model_ema, 0.9999)
o.update(loss.item(), n=im.size(0))
pbar.set_postfix_str(f"loss: {o():.4f}", refresh=False)
pbar.update()
if step % args.samples_per_steps == 0:
model.eval()
with th.no_grad():
# save sample
if args.ddp:
n = args.n_samples
m = math.ceil(n / dist.get_world_size())
samples = sampler(model.module, (m, 3, 32, 32)) / 2 + 0.5 # [-1, 1] -> [0, 1]
# samples = sampler((m, 3, 32, 32)) / 2 + 0.5
samples_lst = [th.empty_like(samples) for _ in range(args.world_size)]
dist.all_gather(samples_lst, samples)
samples = th.cat(samples_lst)[:n]
else:
samples = sampler(model, (args.n_samples, 3, 32, 32)) / 2 + 0.5 # [-1, 1] -> [0, 1]
if args.rankzero:
save_image(samples, args.sample_dir / f"{step:06d}.png", nrow=int(math.sqrt(args.n_samples)))
# save checkpoint
state_dict = {
"model": model.module.state_dict() if args.ddp else model.state_dict(),
"model_ema": model_ema.state_dict(),
}
th.save(state_dict, args.result_dir / "best.pth")
# pbar.clear()
print(flush=True)
args.ema = False
eval(args, model, model_ema)
args.ema = True
eval(args, model, model_ema)
model.train()
if args.ddp:
dist.barrier()
@th.no_grad()
def eval(args, model: nn.Module, model_ema: nn.Module):
model.eval()
model_ema.eval()
if args.ema:
model = model_ema
else:
if args.ddp:
model = model.module
else:
model = model
betas = make_beta_schedule("linear", 1000)
sampler = KarrasSampler(
betas,
n_steps=args.n_sample_steps,
sampler="heun",
clip_denoised=True,
model_var_type=args.model_var_type,
).cuda()
# sampler = KarrasSampler(betas, n_steps=args.n_sample_steps, sampler="dpm", clip_denoised=True).cuda()
# sampler = KarrasSampler(betas, n_steps=args.n_sample_steps, sampler="ancestral").cuda()
# sampler = DDPMSampler(betas, model_mean_type="eps", model_var_type=args.model_var_type, clip_denoised=True).cuda()
# sampler = DDIMSampler(
# betas,
# ddim_s=20,
# ddim_eta=0.0,
# model_mean_type="eps",
# model_var_type=args.model_var_type,
# clip_denoised=True,
# ).cuda()
# sampler = GaussianDiffusionSampler(model, 1e-4, 2e-2, 1000).cuda()
# generate images
n = args.n_samples_eval
m = math.ceil(n / args.world_size)
batch_size = args.batch_size
ims = []
with tqdm(total=n, ncols=100, disable=not args.rankzero, desc="Eval") as pbar:
for i in range(0, m, batch_size):
b = min(m - i, batch_size)
x: Tensor = sampler(model, (b, 3, 32, 32))
# x: Tensor = sampler((b, 3, 32, 32))
x = x.div_(2).add_(0.5).clamp_(0, 1) # [-1, 1] -> [0, 1]
if args.ddp:
xs = [th.empty_like(x) for _ in range(args.world_size)]
dist.all_gather(xs, x)
x = th.cat(xs)
if args.rankzero:
ims.append(x.cpu())
pbar.update(min(pbar.total - pbar.n, b * args.world_size))
# calculate FID
if args.rankzero:
ims = th.cat(ims)
IS, IS_std, FID = calc_score(ims)
print(f"IS: {IS:.4f}, IS_std: {IS_std:.4f}, FID: {FID:.4f}")
if args.ddp:
dist.barrier()
def main_worker(rank: int, args: argparse.Namespace):
if args.ddp:
dist.init_process_group(backend="nccl", init_method=args.dist_url, world_size=args.world_size, rank=rank)
args.rank = rank
args.rankzero = rank == 0
args.gpu = args.gpus[rank]
th.cuda.set_device(args.gpu)
seed_everything(args.rank)
if args.ddp:
print(f"main_worker with rank:{rank} (gpu:{args.gpu}) is loaded", th.__version__)
else:
print(f"main_worker with gpu:{args.gpu} in main thread is loaded", th.__version__)
args.result_dir = Path(args.result_dir)
args.sample_dir = args.result_dir / "samples"
args.output_dir = args.result_dir / "outputs"
if args.rankzero:
args.sample_dir.mkdir(parents=True, exist_ok=True)
args.output_dir.mkdir(parents=True, exist_ok=True)
out_channels = 6 if args.model_var_type.startswith("learned") else 3
model = UNet(
dims=2,
in_channels=3,
model_channels=128,
out_channels=out_channels,
num_res_blocks=2,
attention_resolutions=[2],
dropout=0.1,
channel_mult=[1, 2, 2, 2],
num_groups=32,
num_heads=8,
use_scale_shift_norm=True,
).cuda()
# model = UNet2(1000, 128, [1, 2, 2, 2], [1], 2, 0.1).cuda()
n_model_params = model_params(model)
print("Model Params: %.2fM" % (n_model_params / 1e6))
model_ema: nn.Module = deepcopy(model)
if args.ddp:
model = DDP(model, device_ids=[args.gpu], find_unused_parameters=False)
model_ema.load_state_dict(model.module.state_dict())
else:
model_ema.load_state_dict(model.state_dict())
model_ema.eval().requires_grad_(False)
if not args.eval:
train(args, model, model_ema)
else:
ckpt = th.load(args.result_dir / "best.pth", map_location="cpu")
if args.ddp:
model.module.load_state_dict(ckpt["model"])
else:
model.load_state_dict(ckpt["model"])
model_ema.load_state_dict(ckpt["model_ema"])
eval(args, model, model_ema)
def main():
args = get_args()
args.gpus = list(map(int, args.gpus.split(",")))
args.world_size = len(args.gpus)
args.ddp = args.world_size > 1
if args.ddp:
port = find_free_port()
args.dist_url = f"tcp://127.0.0.1:{port}"
pc = mp.spawn(main_worker, nprocs=args.world_size, args=(args,), join=False)
pids = " ".join(map(str, pc.pids()))
print("\33[101mProcess Ids:", pids, "\33[0m")
try:
pc.join()
except KeyboardInterrupt:
print("\33[101mkill %s\33[0m" % pids)
os.system("kill %s" % pids)
else:
main_worker(0, args)
if __name__ == "__main__":
main()