Skip to content

Commit 14c05f0

Browse files
glenn-jocherpre-commit-ci[bot]Burhan-Q
authored
ultralytics 8.0.211 README language links (ultralytics#6370)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Burhan <62214284+Burhan-Q@users.noreply.github.com>
1 parent fa95b31 commit 14c05f0

20 files changed

+72
-63
lines changed

README.md

+11-11
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-yolo-vision-2023.png"></a>
55
</p>
66

7-
[English](README.md) | [简体中文](README.zh-CN.md)
7+
[中文](https://docs.ultralytics.com/zh/) | [한국어](https://docs.ultralytics.com/ko/) | [日本語](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [Español](https://docs.ultralytics.com/es/) | [Português](https://docs.ultralytics.com/pt/)
88
<br>
99

1010
<div>
@@ -16,8 +16,8 @@
1616
<a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"/></a>
1717
<a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
1818
<a href="https://www.kaggle.com/ultralytics/yolov8"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
19-
</div>
20-
<br>
19+
</div>
20+
<br>
2121

2222
[Ultralytics](https://ultralytics.com) [YOLOv8](https://github.com/ultralytics/ultralytics) is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection and tracking, instance segmentation, image classification and pose estimation tasks.
2323

@@ -44,7 +44,7 @@ To request an Enterprise License please complete the form at [Ultralytics Licens
4444
</div>
4545
</div>
4646

47-
## <div align="center">Documentation</div>
47+
## Documentation
4848

4949
See below for a quickstart installation and usage example, and see the [YOLOv8 Docs](https://docs.ultralytics.com) for full documentation on training, validation, prediction and deployment.
5050

@@ -94,11 +94,11 @@ results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
9494
path = model.export(format="onnx") # export the model to ONNX format
9595
```
9696

97-
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases). See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python) for more examples.
97+
See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python) for more examples.
9898

9999
</details>
100100

101-
## <div align="center">Models</div>
101+
## Models
102102

103103
YOLOv8 [Detect](https://docs.ultralytics.com/tasks/detect), [Segment](https://docs.ultralytics.com/tasks/segment) and [Pose](https://docs.ultralytics.com/tasks/pose) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco) dataset are available here, as well as YOLOv8 [Classify](https://docs.ultralytics.com/tasks/classify) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet) dataset. [Track](https://docs.ultralytics.com/modes/track) mode is available for all Detect, Segment and Pose models.
104104

@@ -203,7 +203,7 @@ See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usag
203203

204204
</details>
205205

206-
## <div align="center">Integrations</div>
206+
## Integrations
207207

208208
Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [Roboflow](https://roboflow.com/?ref=ultralytics), ClearML, [Comet](https://bit.ly/yolov8-readme-comet), Neural Magic and [OpenVINO](https://docs.ultralytics.com/integrations/openvino), can optimize your AI workflow.
209209

@@ -231,14 +231,14 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
231231
| :--------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: |
232232
| Label and export your custom datasets directly to YOLOv8 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) | Automatically track, visualize and even remotely train YOLOv8 using [ClearML](https://cutt.ly/yolov5-readme-clearml) (open-source!) | Free forever, [Comet](https://bit.ly/yolov8-readme-comet) lets you save YOLOv8 models, resume training, and interactively visualize and debug predictions | Run YOLOv8 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |
233233

234-
## <div align="center">Ultralytics HUB</div>
234+
## Ultralytics HUB
235235

236236
Experience seamless AI with [Ultralytics HUB](https://bit.ly/ultralytics_hub) ⭐, the all-in-one solution for data visualization, YOLOv5 and YOLOv8 🚀 model training and deployment, without any coding. Transform images into actionable insights and bring your AI visions to life with ease using our cutting-edge platform and user-friendly [Ultralytics App](https://ultralytics.com/app_install). Start your journey for **Free** now!
237237

238238
<a href="https://bit.ly/ultralytics_hub" target="_blank">
239239
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB preview image"></a>
240240

241-
## <div align="center">Contribute</div>
241+
## Contribute
242242

243243
We love your input! YOLOv5 and YOLOv8 would not be possible without help from our community. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing) to get started, and fill out our [Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experience. Thank you 🙏 to all our contributors!
244244

@@ -247,14 +247,14 @@ We love your input! YOLOv5 and YOLOv8 would not be possible without help from ou
247247
<a href="https://github.com/ultralytics/yolov5/graphs/contributors">
248248
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/image-contributors.png"></a>
249249

250-
## <div align="center">License</div>
250+
## License
251251

252252
Ultralytics offers two licensing options to accommodate diverse use cases:
253253

254254
- **AGPL-3.0 License**: This [OSI-approved](https://opensource.org/licenses/) open-source license is ideal for students and enthusiasts, promoting open collaboration and knowledge sharing. See the [LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) file for more details.
255255
- **Enterprise License**: Designed for commercial use, this license permits seamless integration of Ultralytics software and AI models into commercial goods and services, bypassing the open-source requirements of AGPL-3.0. If your scenario involves embedding our solutions into a commercial offering, reach out through [Ultralytics Licensing](https://ultralytics.com/license).
256256

257-
## <div align="center">Contact</div>
257+
## Contact
258258

259259
For Ultralytics bug reports and feature requests please visit [GitHub Issues](https://github.com/ultralytics/ultralytics/issues), and join our [Discord](https://ultralytics.com/discord) community for questions and discussions!
260260

README.zh-CN.md

+11-11
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-yolo-vision-2023.png"></a>
55
</p>
66

7-
[English](README.md) | [简体中文](README.zh-CN.md)
7+
[中文](https://docs.ultralytics.com/zh/) | [한국어](https://docs.ultralytics.com/ko/) | [日本語](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [Español](https://docs.ultralytics.com/es/) | [Português](https://docs.ultralytics.com/pt/)
88
<br>
99

1010
<div>
@@ -16,8 +16,8 @@
1616
<a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"/></a>
1717
<a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
1818
<a href="https://www.kaggle.com/ultralytics/yolov8"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
19-
</div>
20-
<br>
19+
</div>
20+
<br>
2121

2222
[Ultralytics](https://ultralytics.com) [YOLOv8](https://github.com/ultralytics/ultralytics) 是一款前沿、最先进(SOTA)的模型,基于先前 YOLO 版本的成功,引入了新功能和改进,进一步提升性能和灵活性。YOLOv8 设计快速、准确且易于使用,使其成为各种物体检测与跟踪、实例分割、图像分类和姿态估计任务的绝佳选择。
2323

@@ -44,7 +44,7 @@
4444
</div>
4545
</div>
4646

47-
## <div align="center">文档</div>
47+
## 文档
4848

4949
请参阅下面的快速安装和使用示例,以及 [YOLOv8 文档](https://docs.ultralytics.com) 上有关训练、验证、预测和部署的完整文档。
5050

@@ -94,11 +94,11 @@ results = model("https://ultralytics.com/images/bus.jpg") # 对图像进行预
9494
success = model.export(format="onnx") # 将模型导出为 ONNX 格式
9595
```
9696

97-
[模型](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) 会自动从最新的 Ultralytics [发布版本](https://github.com/ultralytics/assets/releases)中下载。查看 YOLOv8 [Python 文档](https://docs.ultralytics.com/usage/python)以获取更多示例。
97+
查看 YOLOv8 [Python 文档](https://docs.ultralytics.com/usage/python)以获取更多示例。
9898

9999
</details>
100100

101-
## <div align="center">模型</div>
101+
## 模型
102102

103103
[COCO](https://docs.ultralytics.com/datasets/detect/coco)数据集上预训练的YOLOv8 [检测](https://docs.ultralytics.com/tasks/detect)[分割](https://docs.ultralytics.com/tasks/segment)[姿态](https://docs.ultralytics.com/tasks/pose)模型可以在这里找到,以及在[ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet)数据集上预训练的YOLOv8 [分类](https://docs.ultralytics.com/tasks/classify)模型。所有的检测,分割和姿态模型都支持[追踪](https://docs.ultralytics.com/modes/track)模式。
104104

@@ -202,7 +202,7 @@ success = model.export(format="onnx") # 将模型导出为 ONNX 格式
202202

203203
</details>
204204

205-
## <div align="center">集成</div>
205+
## 集成
206206

207207
我们与领先的AI平台的关键整合扩展了Ultralytics产品的功能,增强了数据集标签化、训练、可视化和模型管理等任务。探索Ultralytics如何与[Roboflow](https://roboflow.com/?ref=ultralytics)、ClearML、[Comet](https://bit.ly/yolov8-readme-comet)、Neural Magic以及[OpenVINO](https://docs.ultralytics.com/integrations/openvino)合作,优化您的AI工作流程。
208208

@@ -230,14 +230,14 @@ success = model.export(format="onnx") # 将模型导出为 ONNX 格式
230230
| :--------------------------------------------------------------------------------: | :----------------------------------------------------------------------------: | :----------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------: |
231231
| 使用 [Roboflow](https://roboflow.com/?ref=ultralytics) 将您的自定义数据集直接标记并导出至 YOLOv8 进行训练 | 使用 [ClearML](https://cutt.ly/yolov5-readme-clearml)(开源!)自动跟踪、可视化,甚至远程训练 YOLOv8 | 免费且永久,[Comet](https://bit.ly/yolov8-readme-comet) 让您保存 YOLOv8 模型、恢复训练,并以交互式方式查看和调试预测 | 使用 [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) 使 YOLOv8 推理速度提高多达 6 倍 |
232232

233-
## <div align="center">Ultralytics HUB</div>
233+
## Ultralytics HUB
234234

235235
体验 [Ultralytics HUB](https://bit.ly/ultralytics_hub) ⭐ 带来的无缝 AI,这是一个一体化解决方案,用于数据可视化、YOLOv5 和即将推出的 YOLOv8 🚀 模型训练和部署,无需任何编码。通过我们先进的平台和用户友好的 [Ultralytics 应用程序](https://ultralytics.com/app_install),轻松将图像转化为可操作的见解,并实现您的 AI 愿景。现在就开始您的**免费**之旅!
236236

237237
<a href="https://bit.ly/ultralytics_hub" target="_blank">
238238
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB preview image"></a>
239239

240-
## <div align="center">贡献</div>
240+
## 贡献
241241

242242
我们喜欢您的参与!没有社区的帮助,YOLOv5 和 YOLOv8 将无法实现。请参阅我们的[贡献指南](https://docs.ultralytics.com/help/contributing)以开始使用,并填写我们的[调查问卷](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey)向我们提供您的使用体验反馈。感谢所有贡献者的支持!🙏
243243

@@ -246,14 +246,14 @@ success = model.export(format="onnx") # 将模型导出为 ONNX 格式
246246
<a href="https://github.com/ultralytics/yolov5/graphs/contributors">
247247
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/image-contributors.png"></a>
248248

249-
## <div align="center">许可证</div>
249+
## 许可证
250250

251251
Ultralytics 提供两种许可证选项以适应各种使用场景:
252252

253253
- **AGPL-3.0 许可证**:这个[OSI 批准](https://opensource.org/licenses/)的开源许可证非常适合学生和爱好者,可以推动开放的协作和知识分享。请查看[LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) 文件以了解更多细节。
254254
- **企业许可证**:专为商业用途设计,该许可证允许将 Ultralytics 的软件和 AI 模型无缝集成到商业产品和服务中,从而绕过 AGPL-3.0 的开源要求。如果您的场景涉及将我们的解决方案嵌入到商业产品中,请通过 [Ultralytics Licensing](https://ultralytics.com/license)与我们联系。
255255

256-
## <div align="center">联系方式</div>
256+
## 联系方式
257257

258258
对于 Ultralytics 的错误报告和功能请求,请访问 [GitHub Issues](https://github.com/ultralytics/ultralytics/issues),并加入我们的 [Discord](https://ultralytics.com/discord) 社区进行问题和讨论!
259259

docs/en/guides/azureml-quickstart.md

+3-3
Original file line numberDiff line numberDiff line change
@@ -77,7 +77,7 @@ Train a detection model for 10 epochs with an initial learning_rate of 0.01:
7777
yolo train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01
7878
```
7979

80-
You can find more [instructions to use the Ultralytics CLI here](https://docs.ultralytics.com/quickstart/#use-ultralytics-with-cli).
80+
You can find more [instructions to use the Ultralytics CLI here](../quickstart.md#use-ultralytics-with-cli).
8181

8282
## Quickstart from a Notebook
8383

@@ -114,15 +114,15 @@ pip install onnx>=1.12.0
114114

115115
Note that we need to use the `source activate yolov8env` for all the %%bash cells, to make sure that the %%bash cell uses environment we want.
116116

117-
Run some predictions using the [Ultralytics CLI](https://docs.ultralytics.com/quickstart/#use-ultralytics-with-cli):
117+
Run some predictions using the [Ultralytics CLI](../quickstart.md#use-ultralytics-with-cli):
118118

119119
```bash
120120
%%bash
121121
source activate yolov8env
122122
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
123123
```
124124

125-
Or with the [Ultralytics Python interface](https://docs.ultralytics.com/quickstart/#use-ultralytics-with-python), for example to train the model:
125+
Or with the [Ultralytics Python interface](../quickstart.md#use-ultralytics-with-python), for example to train the model:
126126

127127
```python
128128
from ultralytics import YOLO

docs/en/guides/conda-quickstart.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -129,4 +129,4 @@ And that's it! Your Conda installation will now use `libmamba` as the solver, wh
129129
130130
---
131131
132-
Congratulations! You have successfully set up a Conda environment, installed the Ultralytics package, and are now ready to explore its rich functionalities. Feel free to dive deeper into the [Ultralytics documentation](https://docs.ultralytics.com/) for more advanced tutorials and examples.
132+
Congratulations! You have successfully set up a Conda environment, installed the Ultralytics package, and are now ready to explore its rich functionalities. Feel free to dive deeper into the [Ultralytics documentation](../index.md) for more advanced tutorials and examples.

docs/en/guides/docker-quickstart.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -116,4 +116,4 @@ Replace `/path/on/host` with the directory path on your local machine and `/path
116116

117117
---
118118

119-
Congratulations! You're now set up to use Ultralytics with Docker and ready to take advantage of its powerful capabilities. For alternate installation methods, feel free to explore the [Ultralytics quickstart documentation](https://docs.ultralytics.com/quickstart/).
119+
Congratulations! You're now set up to use Ultralytics with Docker and ready to take advantage of its powerful capabilities. For alternate installation methods, feel free to explore the [Ultralytics quickstart documentation](../quickstart.md).

docs/en/guides/hyperparameter-tuning.md

+3-3
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,7 @@ Hyperparameters are high-level, structural settings for the algorithm. They are
2323
<img width="640" src="https://user-images.githubusercontent.com/26833433/263858934-4f109a2f-82d9-4d08-8bd6-6fd1ff520bcd.png" alt="Hyperparameter Tuning Visual">
2424
</p>
2525

26-
For a full list of augmentation hyperparameters used in YOLOv8 please refer to [https://docs.ultralytics.com/usage/cfg/#augmentation](https://docs.ultralytics.com/usage/cfg/#augmentation).
26+
For a full list of augmentation hyperparameters used in YOLOv8 please refer to the [configurations page](../usage/cfg.md#augmentation).
2727

2828
### Genetic Evolution and Mutation
2929

@@ -200,7 +200,7 @@ The hyperparameter tuning process in Ultralytics YOLO is simplified yet powerful
200200
### Further Reading
201201

202202
1. [Hyperparameter Optimization in Wikipedia](https://en.wikipedia.org/wiki/Hyperparameter_optimization)
203-
2. [YOLOv5 Hyperparameter Evolution Guide](https://docs.ultralytics.com/yolov5/tutorials/hyperparameter_evolution/)
204-
3. [Efficient Hyperparameter Tuning with Ray Tune and YOLOv8](https://docs.ultralytics.com/integrations/ray-tune/)
203+
2. [YOLOv5 Hyperparameter Evolution Guide](../yolov5/tutorials/hyperparameter_evolution.md)
204+
3. [Efficient Hyperparameter Tuning with Ray Tune and YOLOv8](../integrations/ray-tune.md)
205205

206206
For deeper insights, you can explore the `Tuner` class source code and accompanying documentation. Should you have any questions, feature requests, or need further assistance, feel free to reach out to us on [GitHub](https://github.com/ultralytics/ultralytics/issues/new/choose) or [Discord](https://ultralytics.com/discord).

docs/en/guides/index.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -31,6 +31,6 @@ Here's a compilation of in-depth guides to help you master different aspects of
3131

3232
We welcome contributions from the community! If you've mastered a particular aspect of Ultralytics YOLO that's not yet covered in our guides, we encourage you to share your expertise. Writing a guide is a great way to give back to the community and help us make our documentation more comprehensive and user-friendly.
3333

34-
To get started, please read our [Contributing Guide](https://docs.ultralytics.com/help/contributing) for guidelines on how to open up a Pull Request (PR) 🛠️. We look forward to your contributions!
34+
To get started, please read our [Contributing Guide](../help/contributing.md) for guidelines on how to open up a Pull Request (PR) 🛠️. We look forward to your contributions!
3535

3636
Let's work together to make the Ultralytics YOLO ecosystem more robust and versatile 🙏!

0 commit comments

Comments
 (0)