forked from Zeyi-Lin/HivisionIDPhotos
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeploy_api.py
163 lines (131 loc) · 4.34 KB
/
deploy_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from fastapi import FastAPI, UploadFile, Form
import onnxruntime
from src.face_judgement_align import IDphotos_create
from src.layoutCreate import generate_layout_photo, generate_layout_image
from hivisionai.hycv.vision import add_background
from utils.image_utils import resize_image_to_kb_base64
import base64
import numpy as np
import cv2
import ast
app = FastAPI()
# 将图像转换为Base64编码
def numpy_2_base64(img: np.ndarray):
retval, buffer = cv2.imencode(".png", img)
base64_image = base64.b64encode(buffer).decode("utf-8")
return base64_image
# 证件照智能制作接口
@app.post("/idphoto")
async def idphoto_inference(
input_image: UploadFile,
size: str = Form(...),
head_measure_ratio=0.2,
head_height_ratio=0.45,
top_distance_max=0.12,
top_distance_min=0.10,
):
image_bytes = await input_image.read()
nparr = np.frombuffer(image_bytes, np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
# 将字符串转为元组
size = ast.literal_eval(size)
(
result_image_hd,
result_image_standard,
typography_arr,
typography_rotate,
_,
_,
_,
_,
status,
) = IDphotos_create(
img,
size=size,
head_measure_ratio=head_measure_ratio,
head_height_ratio=head_height_ratio,
align=False,
beauty=False,
fd68=None,
human_sess=sess,
IS_DEBUG=False,
top_distance_max=top_distance_max,
top_distance_min=top_distance_min,
)
# 如果检测到人脸数量不等于1(照片无人脸 or 多人脸)
if status == 0:
result_messgae = {"status": False}
# 如果检测到人脸数量等于1, 则返回标准证和高清照结果(png 4通道图像)
else:
result_messgae = {
"status": True,
"img_output_standard": numpy_2_base64(result_image_standard),
"img_output_standard_hd": numpy_2_base64(result_image_hd),
}
return result_messgae
# 透明图像添加纯色背景接口
@app.post("/add_background")
async def photo_add_background(
input_image: UploadFile, color: str = Form(...), kb: str = Form(None)
):
image_bytes = await input_image.read()
nparr = np.frombuffer(image_bytes, np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_UNCHANGED)
color = ast.literal_eval(color)
result_image = add_background(img, bgr=color).astype(np.uint8)
if kb:
result_image = cv2.cvtColor(result_image, cv2.COLOR_RGB2BGR)
result_image_base64 = resize_image_to_kb_base64(result_image, int(kb))
else:
result_image_base64 = numpy_2_base64(result_image)
# try:
result_messgae = {
"status": True,
"image_base64": result_image_base64,
}
# except Exception as e:
# print(e)
# result_messgae = {
# "status": False,
# "error": e
# }
return result_messgae
# 六寸排版照生成接口
@app.post("/generate_layout_photos")
async def generate_layout_photos(
input_image: UploadFile, size: str = Form(...), kb: str = Form(None)
):
# try:
image_bytes = await input_image.read()
nparr = np.frombuffer(image_bytes, np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
size = ast.literal_eval(size)
typography_arr, typography_rotate = generate_layout_photo(
input_height=size[0], input_width=size[1]
)
result_layout_image = generate_layout_image(
img, typography_arr, typography_rotate, height=size[0], width=size[1]
).astype(np.uint8)
if kb:
result_layout_image = cv2.cvtColor(result_layout_image, cv2.COLOR_RGB2BGR)
result_layout_image_base64 = resize_image_to_kb_base64(
result_layout_image, int(kb)
)
else:
result_layout_image_base64 = numpy_2_base64(result_layout_image)
result_messgae = {
"status": True,
"image": result_layout_image_base64,
}
# except Exception as e:
# result_messgae = {
# "status": False,
# }
return result_messgae
if __name__ == "__main__":
import uvicorn
# 加载权重文件
HY_HUMAN_MATTING_WEIGHTS_PATH = "./hivision_modnet.onnx"
sess = onnxruntime.InferenceSession(HY_HUMAN_MATTING_WEIGHTS_PATH)
# 在8080端口运行推理服务
uvicorn.run(app, host="0.0.0.0", port=8080)