forked from Engineering-Course/LIP_JPPNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_parsing_JPPNet-s2.py
163 lines (134 loc) · 7.21 KB
/
evaluate_parsing_JPPNet-s2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from __future__ import print_function
import argparse
from datetime import datetime
import os
import sys
import time
import scipy.misc
import cv2
from PIL import Image
os.environ["CUDA_VISIBLE_DEVICES"]="0"
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from utils import *
from LIP_model import *
N_CLASSES = 20
INPUT_SIZE = (384, 384)
DATA_DIRECTORY = './datasets/examples'
DATA_LIST_PATH = './datasets/examples/list/val.txt'
NUM_STEPS = 6 # Number of images in the validation set.
RESTORE_FROM = './checkpoint/JPPNet-s2'
OUTPUT_DIR = './output/parsing/val'
if not os.path.exists(OUTPUT_DIR):
os.makedirs(OUTPUT_DIR)
def main():
"""Create the model and start the evaluation process."""
# Create queue coordinator.
coord = tf.train.Coordinator()
h, w = INPUT_SIZE
# Load reader.
with tf.name_scope("create_inputs"):
reader = ImageReader(DATA_DIRECTORY, DATA_LIST_PATH, None, False, False, coord)
image = reader.image
image_rev = tf.reverse(image, tf.stack([1]))
image_list = reader.image_list
image_batch_origin = tf.stack([image, image_rev])
image_batch = tf.image.resize_images(image_batch_origin, [int(h), int(w)])
image_batch075 = tf.image.resize_images(image_batch_origin, [int(h * 0.75), int(w * 0.75)])
image_batch125 = tf.image.resize_images(image_batch_origin, [int(h * 1.25), int(w * 1.25)])
# Create network.
with tf.variable_scope('', reuse=False):
net_100 = JPPNetModel({'data': image_batch}, is_training=False, n_classes=N_CLASSES)
with tf.variable_scope('', reuse=True):
net_075 = JPPNetModel({'data': image_batch075}, is_training=False, n_classes=N_CLASSES)
with tf.variable_scope('', reuse=True):
net_125 = JPPNetModel({'data': image_batch125}, is_training=False, n_classes=N_CLASSES)
# parsing net
parsing_fea1_100 = net_100.layers['res5d_branch2b_parsing']
parsing_fea1_075 = net_075.layers['res5d_branch2b_parsing']
parsing_fea1_125 = net_125.layers['res5d_branch2b_parsing']
parsing_out1_100 = net_100.layers['fc1_human']
parsing_out1_075 = net_075.layers['fc1_human']
parsing_out1_125 = net_125.layers['fc1_human']
# pose net
resnet_fea_100 = net_100.layers['res4b22_relu']
resnet_fea_075 = net_075.layers['res4b22_relu']
resnet_fea_125 = net_125.layers['res4b22_relu']
with tf.variable_scope('', reuse=False):
pose_out1_100, pose_fea1_100 = pose_net(resnet_fea_100, 'fc1_pose')
pose_out2_100, pose_fea2_100 = pose_refine(pose_out1_100, parsing_out1_100, pose_fea1_100, name='fc2_pose')
parsing_out2_100, parsing_fea2_100 = parsing_refine(parsing_out1_100, pose_out1_100, parsing_fea1_100, name='fc2_parsing')
parsing_out3_100, parsing_fea3_100 = parsing_refine(parsing_out2_100, pose_out2_100, parsing_fea2_100, name='fc3_parsing')
with tf.variable_scope('', reuse=True):
pose_out1_075, pose_fea1_075 = pose_net(resnet_fea_075, 'fc1_pose')
pose_out2_075, pose_fea2_075 = pose_refine(pose_out1_075, parsing_out1_075, pose_fea1_075, name='fc2_pose')
parsing_out2_075, parsing_fea2_075 = parsing_refine(parsing_out1_075, pose_out1_075, parsing_fea1_075, name='fc2_parsing')
parsing_out3_075, parsing_fea3_075 = parsing_refine(parsing_out2_075, pose_out2_075, parsing_fea2_075, name='fc3_parsing')
with tf.variable_scope('', reuse=True):
pose_out1_125, pose_fea1_125 = pose_net(resnet_fea_125, 'fc1_pose')
pose_out2_125, pose_fea2_125 = pose_refine(pose_out1_125, parsing_out1_125, pose_fea1_125, name='fc2_pose')
parsing_out2_125, parsing_fea2_125 = parsing_refine(parsing_out1_125, pose_out1_125, parsing_fea1_125, name='fc2_parsing')
parsing_out3_125, parsing_fea3_125 = parsing_refine(parsing_out2_125, pose_out2_125, parsing_fea2_125, name='fc3_parsing')
parsing_out1 = tf.reduce_mean(tf.stack([tf.image.resize_images(parsing_out1_100, tf.shape(image_batch_origin)[1:3,]),
tf.image.resize_images(parsing_out1_075, tf.shape(image_batch_origin)[1:3,]),
tf.image.resize_images(parsing_out1_125, tf.shape(image_batch_origin)[1:3,])]), axis=0)
parsing_out2 = tf.reduce_mean(tf.stack([tf.image.resize_images(parsing_out2_100, tf.shape(image_batch_origin)[1:3,]),
tf.image.resize_images(parsing_out2_075, tf.shape(image_batch_origin)[1:3,]),
tf.image.resize_images(parsing_out2_125, tf.shape(image_batch_origin)[1:3,])]), axis=0)
parsing_out3 = tf.reduce_mean(tf.stack([tf.image.resize_images(parsing_out3_100, tf.shape(image_batch_origin)[1:3,]),
tf.image.resize_images(parsing_out3_075, tf.shape(image_batch_origin)[1:3,]),
tf.image.resize_images(parsing_out3_125, tf.shape(image_batch_origin)[1:3,])]), axis=0)
raw_output = tf.reduce_mean(tf.stack([parsing_out1, parsing_out2, parsing_out3]), axis=0)
head_output, tail_output = tf.unstack(raw_output, num=2, axis=0)
tail_list = tf.unstack(tail_output, num=20, axis=2)
tail_list_rev = [None] * 20
for xx in range(14):
tail_list_rev[xx] = tail_list[xx]
tail_list_rev[14] = tail_list[15]
tail_list_rev[15] = tail_list[14]
tail_list_rev[16] = tail_list[17]
tail_list_rev[17] = tail_list[16]
tail_list_rev[18] = tail_list[19]
tail_list_rev[19] = tail_list[18]
tail_output_rev = tf.stack(tail_list_rev, axis=2)
tail_output_rev = tf.reverse(tail_output_rev, tf.stack([1]))
raw_output_all = tf.reduce_mean(tf.stack([head_output, tail_output_rev]), axis=0)
raw_output_all = tf.expand_dims(raw_output_all, dim=0)
raw_output_all = tf.argmax(raw_output_all, dimension=3)
pred_all = tf.expand_dims(raw_output_all, dim=3) # Create 4-d tensor.
# Which variables to load.
restore_var = tf.global_variables()
# Set up tf session and initialize variables.
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
init = tf.global_variables_initializer()
sess.run(init)
sess.run(tf.local_variables_initializer())
# Load weights.
loader = tf.train.Saver(var_list=restore_var)
if RESTORE_FROM is not None:
if load(loader, sess, RESTORE_FROM):
print(" [*] Load SUCCESS")
else:
print(" [!] Load failed...")
# Start queue threads.
threads = tf.train.start_queue_runners(coord=coord, sess=sess)
# Iterate over training steps.
for step in range(NUM_STEPS):
parsing_ = sess.run(pred_all)
if step % 100 == 0:
print('step {:d}'.format(step))
print (image_list[step])
img_split = image_list[step].split('/')
img_id = img_split[-1][:-4]
msk = decode_labels(parsing_, num_classes=N_CLASSES)
parsing_im = Image.fromarray(msk[0])
parsing_im.save('{}/{}_vis.png'.format(OUTPUT_DIR, img_id))
cv2.imwrite('{}/{}.png'.format(OUTPUT_DIR, img_id), parsing_[0,:,:,0])
coord.request_stop()
coord.join(threads)
if __name__ == '__main__':
main()
##############################################################333