-
Notifications
You must be signed in to change notification settings - Fork 2
/
demo.py
413 lines (323 loc) · 13.3 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
#
# Copyright (C) 2023, NTU
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact ke.xian@ntu.edu.sg or xianke1991@gmail.com
#
import os
import glob
import torch
import cv2
import argparse
import numpy as np
import matplotlib.pyplot as plt
from torch.nn import DataParallel as DP
from torchvision.transforms import Compose
from dpt.models import DPTDepthModel
from dpt.transforms import Resize, NormalizeImage, PrepareForNet
def run_video(input_path, output_path, model, checkpoint, optimize=True):
print("initialize")
# select device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("device: %s" % device)
# save video with 12 fps
fps = 12
# load network
net_w = net_h = 384
model = DP(model)
checkpoint = torch.load(checkpoint)
model.load_state_dict(checkpoint)
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
transform = Compose(
[
Resize(
net_w,
net_h,
resize_target=None,
keep_aspect_ratio=True,
ensure_multiple_of=32,
resize_method="minimal",
image_interpolation_method=cv2.INTER_CUBIC,
),
normalization,
PrepareForNet(),
]
)
model.eval()
if optimize == True and device == torch.device("cuda"):
model = model.to(memory_format=torch.channels_last)
model = model.half()
model.to(device)
# get input
video_names = glob.glob(os.path.join(input_path, "*"))
num_images = len(video_names)
# create output folder
os.makedirs(output_path, exist_ok=True)
print("start processing")
for ind, video_name in enumerate(video_names):
if os.path.isdir(video_name):
continue
print(" processing {} ({}/{})".format(video_name, ind + 1, num_images))
# input
filename = os.path.join(
output_path, os.path.basename(video_name)
)
vidcap = cv2.VideoCapture(video_name)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
img_inputs = None
predictions = None
overlap = 1
interval = 1
seq_len = 4
shift = 0
valid_frame = 0
while 1:
success, image = vidcap.read()
if success is False:
break
valid_frame += 1
if valid_frame >= 40 *24:
break
img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0
img_input = transform({"image": img})["image"]
if img_inputs is None:
img_inputs = img_input[None]
else:
img_inputs = np.concatenate((img_inputs, img_input[None]), axis=0)
img_num, c, h, w = img_inputs.shape
predictions = np.zeros((img_num, h, w)).astype(np.float32)
count = np.zeros((img_num, 1, 1)).astype(np.float32)
done = False
for i in range(0, img_num, seq_len - overlap * 2):
if i+interval*seq_len >= img_num:
done = True
sample = img_inputs[img_num-interval*seq_len:img_num:interval]
else:
sample = img_inputs[i:i+interval*seq_len:interval]
# compute
with torch.no_grad():
sample = torch.from_numpy(sample).to(device)
if optimize == True and device == torch.device("cuda"):
sample = sample.to(memory_format=torch.channels_last)
sample = sample.half()
sample = sample.unsqueeze(0)
prediction = model.forward(sample).squeeze(0)
prediction = (
prediction
.squeeze()
.cpu()
.numpy()
)
if i == 0:
predictions[i:i+interval*(seq_len-overlap):interval] = predictions[i:i+interval*(seq_len-overlap):interval] + prediction[:seq_len-overlap]
count[i:i+interval*(seq_len-overlap):interval] = count[i:i+interval*(seq_len-overlap):interval] + 1
elif i == img_num - interval * (seq_len - 1) - 1:
predictions[i+interval*overlap:i+interval*seq_len:interval] = predictions[i+interval*overlap:i+interval*seq_len:interval] + prediction[overlap:]
count[i+interval*overlap:i+interval*seq_len:interval] = count[i+interval*overlap:i+interval*seq_len:interval] + 1
else:
predictions[i+interval*overlap:i+interval*(seq_len-overlap):interval] = predictions[i+interval*overlap:i+interval*(seq_len-overlap):interval] + prediction[overlap:seq_len-overlap]
count[i+interval*overlap:i+interval*(seq_len-overlap):interval] = count[i+interval*overlap:i+interval*(seq_len-overlap):interval] + 1
if done:
break
predictions = predictions / count
predictions = (predictions - predictions.min()) / (predictions.max() - predictions.min()) * 255
predictions = predictions.astype(np.uint8)
videoWriter = cv2.VideoWriter(filename, fourcc, fps, (img.shape[1], img.shape[0]))
colormap = plt.get_cmap('inferno')
for i in range(predictions.shape[0]):
heatmap = (colormap(predictions[i]) * 2 ** 8).astype(np.uint8)[:, :, :3]
prediction = cv2.cvtColor(heatmap, cv2.COLOR_RGB2BGR)
prediction = cv2.resize(prediction, dsize=(img.shape[1], img.shape[0]), interpolation=cv2.INTER_LINEAR)
videoWriter.write(prediction)
videoWriter.release()
del videoWriter
print("finished")
def run_imgs(input_path, output_path, model, checkpoint, optimize=True):
print("initialize")
# select device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("device: %s" % device)
# save video with 12 fps
fps = 12
# load network
net_w = net_h = 384
model = DP(model)
checkpoint = torch.load(checkpoint)
model.load_state_dict(checkpoint)
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
transform = Compose(
[
Resize(
net_w,
net_h,
resize_target=None,
keep_aspect_ratio=True,
ensure_multiple_of=32,
resize_method="minimal",
image_interpolation_method=cv2.INTER_CUBIC,
),
normalization,
PrepareForNet(),
]
)
model.eval()
if optimize == True and device == torch.device("cuda"):
model = model.to(memory_format=torch.channels_last)
model = model.half()
model.to(device)
# get input
img_names = sorted(os.listdir(input_path))
num_images = len(img_names)
# create output folder
os.makedirs(output_path, exist_ok=True)
print("start processing")
img_inputs = None
predictions = None
for ind, img_name in enumerate(img_names):
img_name = os.path.join(input_path, img_name)
print(" processing {} ({}/{})".format(img_name, ind + 1, num_images))
image = cv2.imread(img_name)
img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0
img_input = transform({"image": img})["image"]
if img_inputs is None:
img_inputs = img_input[None]
else:
img_inputs = np.concatenate((img_inputs, img_input[None]), axis=0)
overlap = 1 # 0
interval = 1
seq_len = 4
shift = 0
img_num, c, h, w = img_inputs.shape
predictions = np.zeros((img_num, h, w)).astype(np.float32)
count = np.zeros((img_num, 1, 1)).astype(np.float32)
done = False
for i in range(0, img_num, seq_len - overlap * 2):
if i + interval * seq_len >= img_num:
done = True
sample = img_inputs[img_num - interval * seq_len:img_num:interval]
else:
sample = img_inputs[i:i + interval * seq_len:interval]
# compute
with torch.no_grad():
sample = torch.from_numpy(sample).to(device)
if optimize == True and device == torch.device("cuda"):
sample = sample.to(memory_format=torch.channels_last)
sample = sample.half()
sample = sample.unsqueeze(0)
prediction = model.forward(sample).squeeze(0)
prediction = (
prediction
.squeeze()
.cpu()
.numpy()
)
if i == 0:
predictions[i:i + interval * (seq_len - overlap):interval] = predictions[i:i + interval * (seq_len - overlap):interval] + prediction[:seq_len - overlap]
count[i:i + interval * (seq_len - overlap):interval] = count[i:i + interval * (seq_len - overlap):interval] + 1
elif i == img_num - interval * (seq_len - 1) - 1:
predictions[i + interval * overlap:i + interval * seq_len:interval] = predictions[i + interval * overlap:i + interval * seq_len:interval] + prediction[overlap:]
count[i + interval * overlap:i + interval * seq_len:interval] = count[i + interval * overlap:i + interval * seq_len:interval] + 1
else:
predictions[i + interval * overlap:i + interval * (seq_len - overlap):interval] = predictions[i + interval * overlap:i + interval * (seq_len - overlap):interval] + prediction[overlap:seq_len - overlap]
count[i + interval * overlap:i + interval * (seq_len - overlap):interval] = count[i + interval * overlap:i + interval * (seq_len - overlap):interval] + 1
if done:
break
predictions = predictions / count
predictions = (predictions - predictions.min()) / (predictions.max() - predictions.min()) * 255
predictions = predictions.astype(np.uint8)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
savename = os.path.join(output_path, os.path.split(input_path)[-1] + '.mp4')
videoWriter = cv2.VideoWriter(savename, fourcc, fps, (img.shape[1], img.shape[0]))
colormap = plt.get_cmap('inferno')
for i in range(predictions.shape[0]):
heatmap = (colormap(predictions[i]) * 2 ** 8).astype(np.uint8)[:, :, :3]
prediction = cv2.cvtColor(heatmap, cv2.COLOR_RGB2BGR)
prediction = cv2.resize(prediction, dsize=(img.shape[1], img.shape[0]), interpolation=cv2.INTER_LINEAR)
videoWriter.write(prediction)
videoWriter.release()
del videoWriter
print("finished")
if __name__ == "__main__":
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
parser = argparse.ArgumentParser()
parser.add_argument(
"-i", "--input_path", default="input_video", help="folder with input images"
)
parser.add_argument(
"-o",
"--output_path",
default="output_monodepth",
help="folder for output images",
)
parser.add_argument(
"-m", "--model_weights", default=None, help="path to model weights"
)
parser.add_argument(
"-t",
"--model_type",
default="dpt_hybrid",
help="model type [dpt_large|dpt_hybrid|midas_v21]",
)
parser.add_argument(
"--attn_interval",
default=2,
type=int,
help="1,2,3,4,6",
)
parser.add_argument(
"--format",
default="video",
help="model type [video|imgs]",
)
parser.add_argument("--optimize", dest="optimize", action="store_true")
parser.add_argument("--no-optimize", dest="optimize", action="store_false")
parser.set_defaults(optimize=True)
args = parser.parse_args()
default_models = {
"dpt_large": "weights/dpt_large-midas-2f21e586.pt",
"dpt_hybrid": "weights/dpt_hybrid-midas-501f0c75.pt",
}
if args.model_weights is None:
args.model_weights = default_models[args.model_type]
if args.model_type == 'dpt_large':
model = DPTDepthModel(
backbone="vitl16_384",
non_negative=True,
enable_attention_hooks=False,
attn_interval=args.attn_interval,
)
checkpoint = 'checkpoints/vita-large.pth'
elif args.model_type == 'dpt_hybrid':
model = DPTDepthModel(
backbone="vitb_rn50_384",
non_negative=True,
enable_attention_hooks=False,
attn_interval=args.attn_interval,
)
checkpoint = 'checkpoints/vita-hybrid.pth'
# set torch options
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
# compute depth maps
if args.format == 'video':
# run demo on videos
run_video(
args.input_path,
args.output_path,
model,
checkpoint,
args.optimize,
)
else:
# run demo on a image squence
run_imgs(
args.input_path,
args.output_path,
model,
checkpoint,
args.optimize,
)