Skip to content

Kent0n-Li/nnSAM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

nnSAM: Plug-and-play Segment Anything Model Improves nnUNet Performance

Our entire code is built based on nnUNet, and you can follow the nnUNet instructions exactly.

Install nnSAM depending on your use case:

conda create -n nnsam python=3.9
conda activate nnsam
pip install git+https://github.com/ChaoningZhang/MobileSAM.git
pip install timm
pip install git+https://github.com/Kent0n-Li/nnSAM.git

It is important to input "set MODEL_NAME=nnsam" before using it.

set MODEL_NAME=nnsam
nnUNetv2_plan_and_preprocess -d DATASET_ID --verify_dataset_integrity

nnUNetv2_train DATASET_NAME_OR_ID UNET_CONFIGURATION FOLD [additional options, see -h]

nnUNetv2_train DATASET_NAME_OR_ID UNET_CONFIGURATION FOLD --val --npz

nnUNetv2_train DATASET_NAME_OR_ID 2d FOLD

nnUNetv2_train DATASET_NAME_OR_ID 3d_fullres FOLD

nnUNetv2_predict -i INPUT_FOLDER -o OUTPUT_FOLDER -d DATASET_NAME_OR_ID -c CONFIGURATION --save_probabilities

How to get started?

Read these:

Additional information:

Acknowledgements

nnU-Net is developed and maintained by the Applied Computer Vision Lab (ACVL) of Helmholtz Imaging and the Division of Medical Image Computing at the German Cancer Research Center (DKFZ).

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages