-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
59 lines (53 loc) · 2.19 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import torch
import torch.optim as optim
import torch.nn.functional as F
from model import CNN
from dataset import train_loader, test_loader
from config import device
def train(model, device, train_loader, optimizer, epoch):
losses = []
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
losses.append(loss.item())
if batch_idx % 10 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
return losses
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
return (float(correct) / len(test_loader.dataset))
model = CNN()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
losses = []
accuracies = []
for epoch in range(0, 1000):
losses.extend(train(model, device, train_loader, optimizer, epoch))
accuracies.append(test(model, device, test_loader))
print(accuracies[-1])
# losses = [item for sublist in losses for item in sublist]
torch.save({'epoch': 1000,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': losses[-1],
'acc': accuracies[-1]},
'./CNN_afterAImodel_checkpoint.pth')