-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNew_APE-Gen.py
executable file
·464 lines (357 loc) · 22.3 KB
/
New_APE-Gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
from helper_scripts import argparser
from helper_scripts.Ape_gen_macros import apply_function_to_file, replace_chains, initialize_dir, \
merge_and_tidy_pdb, add_sidechains, \
create_csv_from_list_of_files, \
copy_file, pretty_print_analytics, move_batch_of_files,\
copy_batch_of_files, split_receptor_and_peptide, \
remove_remarks_and_others_from_pdb, replace_HETATM, \
delete_elements, split_to_equal_parts, remove_dirs, \
verbose, set_verbose \
from classes.Peptide_class import Peptide
from classes.Receptor_class import Receptor
from classes.pMHC_class import pMHC
import pandas as pd
import numpy as np
import re
import sys
from mpire import WorkerPool
from tqdm import tqdm
# Temporary
from subprocess import call
from pdbtools import pdb_mkensemble
import glob
def rescoring_after_openmm(conf_index, filestore, rcd_num_loops, peptide_template_anchors_xyz, anchor_tol, tolerance_anchors, min_with_smina):
new_filestore = filestore + '/5_openMM_conformations'
# 1. Rename B chain to C chain
apply_function_to_file(replace_chains, new_filestore + "/10_pMHC_complexes/pMHC_" + conf_index + ".pdb", chain_from="B", chain_to="C")
# 2. Separate the peptide from the MHC
receptor_file, peptide_file = split_receptor_and_peptide(new_filestore + "/10_pMHC_complexes/pMHC_" + conf_index + ".pdb")
# 3. Prepare Receptor for Scoring
apply_function_to_file(remove_remarks_and_others_from_pdb, receptor_file, records=('ATOM', 'HETATM', 'TER', 'END '))
receptor = Receptor.frompdb(receptor_file)
receptor.doMinimization = True
receptor.useSMINA = min_with_smina
receptor_is_not_valid = receptor.prepare_for_scoring(new_filestore + '/09_minimized_receptors', index=conf_index)
if(receptor_is_not_valid): return
apply_function_to_file(remove_remarks_and_others_from_pdb, peptide_file, records=('ATOM', 'HETATM', 'TER', 'END '))
apply_function_to_file(replace_HETATM, peptide_file)
peptide = Peptide.frompdb(peptide_file, secondary_anchors = tolerance_anchors, peptide_index=conf_index)
peptide.sequence = re.sub('[a-z]', '', peptide.sequence) # Remove PTMs from the sequence
# 4. Re-score with SMINA (enforce no further minimization)
peptide_is_not_valid = peptide.prepare_for_scoring(new_filestore)
if(peptide_is_not_valid): return
peptide.score_with_SMINA(new_filestore, receptor)
# 5. Anchor filtering step (probably not needed, anchors are not moving that much)
peptide_is_not_valid = peptide.compute_anchor_tolerance(new_filestore, receptor, peptide_template_anchors_xyz, anchor_tol, rcd_num_loops)
if(peptide_is_not_valid): return
# 6. Create the peptide + MHC ensemble files (Already have those but ok...)
peptide.create_peptide_receptor_complexes(new_filestore, receptor)
# Done!
return
def prepare_for_openmm(conf_index, filestore, peptide):
# 1. Run receptors through PDBFixer, as the non-polar hydrogens could be in wrong places:
receptor = Receptor.frompdb(filestore + '/4_SMINA_data/09_minimized_receptors/receptor_' + conf_index + ".pdb")
add_sidechains(receptor.pdb_filename, filestore, add_hydrogens="Yes", keep_IDs=True)
# 2. Unify peptide and receptor together and create a new pMHC complex
pMHC_conformation = filestore + "/5_openMM_conformations/11_pMHC_before_sim/pMHC_" + conf_index + ".pdb"
merge_and_tidy_pdb([receptor.pdb_filename,
filestore + '/4_SMINA_data/08_anchor_filtering/peptide_' + conf_index + ".pdb"],
pMHC_conformation)
pMHC_complex = pMHC(pdb_filename=pMHC_conformation, peptide=peptide)
# 3. If there is a phosphorylation somewhere, we need to give the appropriate CONECT fields to the PTM residue
pMHC_complex.add_PTM_CONECT_fields(filestore, peptide.PTM_list, conf_index)
# Done!
return
def peptide_refinement_and_scoring(index, template_index, new_index, rcd_num_loops, original_peptide, filestore, receptor, tolerance_anchors, peptide_template_anchors_xyz, anchor_tol):
# Routine that refines and scores a peptide/receptor pair with SMINA/Vinardo
new_filestore = filestore + '/4_SMINA_data'
# 1. Assemble peptide by mergin the peptide anchors and the middle part
assembled_peptide = new_filestore + '/01_assembled_peptides/assembled_' + new_index + '.pdb'
if index <= rcd_num_loops:
model_location = filestore + '/3_RCD_data/' + str(template_index) + '/splits/model_' + str(index) + '.pdb'
Nterm_location = filestore + '/2_input_to_RCD/' + str(template_index) + '/N_ter.pdb'
Cterm_location = filestore + '/2_input_to_RCD/' + str(template_index) + '/C_ter.pdb'
merge_and_tidy_pdb([Nterm_location, model_location, Cterm_location], assembled_peptide)
else:
copy_file(filestore + '/2_input_to_RCD/' + str(template_index) + '/model_'+ str(template_index) + '.pdb',
assembled_peptide)
peptide = Peptide.frompdb(assembled_peptide, secondary_anchors=tolerance_anchors, peptide_index=new_index, PTM_list = original_peptide.PTM_list)
# 2. Now that the peptide is assembled, Fill in the sidechains with pdbfixer
peptide.pdb_filename = add_sidechains(peptide.pdb_filename, new_filestore, peptide_idx=new_index, keep_IDs=True)
# 3. Do PTMs
peptide_is_not_valid = peptide.perform_PTM(new_filestore)
if(peptide_is_not_valid): return
# 4. Score with SMINA
# 4a. .pdb to .pdbqt transformation using autodocktools routines (very good for filtering bad conformations)
peptide_is_not_valid = peptide.prepare_for_scoring(new_filestore)
if(peptide_is_not_valid): return
# 4b. Optimize and score with SMINA (or other options, depending on args)
peptide_is_not_valid = peptide.dock_score_with_SMINA(new_filestore, receptor)
if(peptide_is_not_valid): return
# 5. Anchor filtering (based on anchor tolerance argument) (improvement from previous version)
peptide_is_not_valid = peptide.compute_anchor_tolerance(new_filestore, receptor, peptide_template_anchors_xyz, anchor_tol, rcd_num_loops)
if(peptide_is_not_valid): return
# 6. Fix flexible residue co-ordinates if receptor is flexible
if receptor.doMinimization:
peptide_is_not_valid = peptide.fix_flexible_residues(new_filestore, receptor)
if(peptide_is_not_valid): return
# 7. Create the peptide + MHC ensemble files
peptide.create_peptide_receptor_complexes(new_filestore, receptor)
# Done!
return
def backbone_sampling(template_index, peptide_templates, receptor_template, peptide, anchors, anchor_status, anchor_selection, rcd_num_loops, RCD_dist_tol, filestore):
# Routine that initializes a peptide template and samples backbones based no that template
# 1. Initialize appropriate directories
initialize_dir([filestore + '/1_alignment_files/' + str(template_index),
filestore + '/2_input_to_RCD/' + str(template_index),
filestore + '/3_RCD_data/'+ str(template_index)])
# 2. Peptide template initialization
peptide_template = peptide.initialize_peptide_template(peptide_templates.iloc[[template_index]], anchors, anchor_status)
# 3. Alignment and preparing input for RCD
receptor_template.align(reference=peptide_template, filestore=filestore, template_index=template_index)
# 4. Get peptide template anchor positions for anchor tolerance filtering
#anchor_filtering_data_dict[template_index] = peptide_template.set_anchor_xyz(anchor_selection, peptide)
receptor_template.prepare_for_RCD(reference=peptide_template, peptide=peptide,
filestore=filestore, template_index=template_index)
# 5. Perform RCD on the receptor given peptide:
receptor_template.RCD(peptide, RCD_dist_tol, rcd_num_loops, filestore, template_index)
# Done! (6. Return also the anchor information for each template, it will come in handy later on)
return (template_index, peptide_template.set_anchor_xyz(anchor_selection, peptide))
def apegen(args):
print("Start of APE-Gen")
# 0. ARGUMENTS:
parser = argparser.APE_Gen_parser()
args = parser.parse_args()
# - peptide_input: Crystal structure OR sequence
peptide_input = args.peptide_input[0]
# - receptor_class: .pdb OR sequence OR if peptide_input is crystal structure, REDOCK!
receptor_class = args.receptor_class[0]
# - Number of cores
num_cores = int(args.num_cores)
# - Number of loops to generate with RCD
rcd_num_loops = int(args.num_generated_loops)
# - Number of loops to optimize (that will pass as a result of a loop scoring function)
num_loops = int(args.num_loops_for_optimization)
# The percentage of overall peptide conformations processed (defined by --num_loops_for_optimization flag) that will be coming from RCD sampling.
non_sampled_confs = int(np.rint((1 - args.sampling_ratio)*num_loops))
num_loops = int(np.rint(args.sampling_ratio*num_loops))
# - RCD dist tolerance: RCD tolerance (in angstroms) of inner residues when performing IK
RCD_dist_tol = args.RCD_dist_tol
# --loop_score: Choose scoring function for RCD loop scoring (none will avoid scoring altogether)
loop_score = args.loop_score
# - rigid_receptor : Disable sampling of receptor DoFs in the ./helper_files/flex_res.txt
doReceptorMinimization = not args.rigid_receptor
# - Debug: Print extra information?
verbose = args.verbose
set_verbose(verbose)
# --Save_only_pep_confs: Disable saving full conformations (peptide and MHC)
saveFullConfs = not args.save_only_pep_confs
# --anchors: User defined anchors for peptide template search + anchor tolerance
anchors = args.anchors
# --Anchor_tolerance? Should this be an option?
anchor_tol = args.anchor_tol
# --Score_with_open_mm?
score_with_openmm = args.score_with_openmm
# Do not apply constraints on the backbone when applying openMM
no_constraints_openmm = args.no_constraints_openmm
# (choose either 'receptor_only' or 'pep_and_recept')
pass_type = args.pass_type
# - min_with_smina: Minimize with SMINA instead of default Vinardo
min_with_smina = args.min_with_smina
# - use_gpu for Open_MM_minimization step
device = "OpenCL" if args.use_gpu else "CPU"
# --clean_rcd: Remove RCD folder at the end of each round?
cleanRCD = args.clean_rcd
# --anchor_selection: Give what type of anchors should be considered in the anchor tolerance step (choose 'primary', 'secondary' or 'none' to skip the anchor tolerance step altogether)
anchor_selection = args.anchor_selection
# --max_no_templates: The maximum number of templates that will be used in the modelling process.
max_no_templates = args.max_no_templates
# --similarity_threshold: Score [0-1] that defines if a peptide template will be considered as a candidate during the modelling process.
similarity_threshold = args.similarity_threshold
# Option for anchor identification: Either PMBEC or MHCflurry motifs
use_motifs = args.use_motifs
# --keep_all_files: Keep all intermediate generated files from the modeling process
keep_all_files = args.keep_all_files
# --cv: ONLY FOR TESTING (to be removed in the final version)
cv = args.cv
# Directory to store intermediate files
temp_files_storage = args.dir
initialize_dir(temp_files_storage)
# 1. INPUT PROCESSING
peptide = Peptide.init_peptide(peptide_input)
PTM_list = peptide.PTM_list
# Check if:
# A. There are any PTMs other than phosphorylation. GROMACS will be considered, but not right know..
# B. Phosphorylation is on N-terminus or C-terminus. FF parameters are not given for these cases.
# C. User wants to model with no hydrogens involved, but also run an energy minimization routine.
# From my understanding, PDBFixer when given an MHC with no hydrogens will mess smth up not in terms of atoms, but in terms of bonds.
# Let's prevent users from actually doing this.
# D. If the number of loops is more than 5000, we should remove possibility from modelling (and this I guess can be manually overriden)
if (('phosphorylate 1' in PTM_list) or ('phosphorylate ' + str(len(peptide.sequence)) in PTM_list)) and (score_with_openmm):
sys.exit("\nERROR: Phosphorylation in N-terminus or C-terminus and openMM optimization is NOT supported. Force Field parameters are not released yet. Please omit OpenMM step for modelling this type of PTM.")
for PTM in PTM_list:
if (not PTM.startswith("phosphorylate")) and (score_with_openmm):
sys.exit("\nERROR: PTM other than phosphorylation is not yet supported with OpenMM. Omit the OpenMM step and stay tuned for changes!")
if num_loops > rcd_num_loops:
sys.exit("\nERROR: The number of loops for post-processing should not exceed the number of loops that are generated!")
# File storage location
filestore = temp_files_storage + "/results"
if verbose: print("Initializing receptor")
receptor, receptor_template_file = Receptor.init_receptor(receptor_class, temp_files_storage + '/MODELLER_output', peptide.sequence, cv)
receptor.doMinimization = doReceptorMinimization
receptor.useSMINA = min_with_smina
# Peptide Template and Receptor Template are pMHC complexes
peptide_templates, anchors, anchor_status = peptide.get_peptide_templates(receptor.allotype, anchors, max_no_templates, similarity_threshold, use_motifs, cv)
if peptide_templates.empty:
print("No available peptides for the given peptide-MHC input! Aborting...")
sys.exit(0)
# Prepare receptor for scoring (generate .pdbqt for SMINA):
receptor_template = pMHC(pdb_filename=receptor_template_file, peptide=peptide, receptor=receptor)
if verbose:
print("\nReceptor Successfully Processed")
print(" Receptor Allotype: " + receptor.allotype)
print(" Receptor Template: " + receptor_template.pdb_filename)
print("\nPeptide Successfully Processed")
print(" Peptide Sequence:")
print(" ", peptide.sequence)
print(" Peptide PTMs:")
print(" ", PTM_list)
anchor_filtering_data_dict = {}
filestore = temp_files_storage + "/results/"
# 2. BACKBONE SAMPLING LOOP
arg_list = list(map(lambda template_index: (template_index, peptide_templates, receptor_template, peptide, anchors, anchor_status, anchor_selection, rcd_num_loops, RCD_dist_tol, filestore),
list(range(peptide_templates.shape[0]))))
with WorkerPool(n_jobs=num_cores) as pool:
anchor_results = pool.map(backbone_sampling, arg_list, progress_bar=verbose)
# 3. LOOP SCORING LOOP
if verbose: print("Scoring the sampled loops...")
loop_index_list = []
new_index_list = []
template_index_list = []
num_loops_list = split_to_equal_parts(num_loops, peptide_templates.shape[0])
non_sampled_confs_list = split_to_equal_parts(non_sampled_confs, peptide_templates.shape[0])
anchor_filtering_data_dict = {}
for template_index in range(peptide_templates.shape[0]):
# Extract anchor information from mpire process
anchor_info = anchor_results[template_index]
anchor_filtering_data_dict[anchor_info[0]] = (anchor_info[1][0], anchor_info[1][1])
# Rank the loops and make indexes intepretable (template index + loop index)
loop_indexes = receptor_template.loop_ranking(rcd_num_loops, num_loops_list[template_index], loop_score, non_sampled_confs_list[template_index], filestore, template_index)
no_of_conformations = num_loops_list[template_index] + non_sampled_confs_list[template_index]
new_indexes = [str(template_index) + str(i).zfill(len(str(no_of_conformations))) for i in range(non_sampled_confs_list[template_index], no_of_conformations)]
new_indexes = new_indexes + [str(template_index) + str(i).zfill(len(str(no_of_conformations))) for i in range(0, non_sampled_confs_list[template_index])]
loop_index_list += loop_indexes
new_index_list += new_indexes
template_index_list += [template_index]*no_of_conformations
# 4. PEPTIDE REFINEMENT AND SCORING LOOP
subdir_list = ['/01_assembled_peptides', '/05_per_peptide_results', '/03_PTMed_peptides',
'/02_add_sidechains', '/04_pdbqt_peptides', '/06_scoring_results', '/07_flexible_receptors',
'/09_minimized_receptors', '/08_anchor_filtering', '/10_pMHC_complexes/']
initialize_dir([filestore + '/4_SMINA_data' + subdir for subdir in subdir_list])
if verbose: print("Preparing receptor sans peptide for scoring (generate receptor.pdbqt)")
receptor_template.remove_peptide(filestore + "/4_SMINA_data")
receptor = receptor_template.receptor
add_sidechains(receptor.pdb_filename, filestore, keep_IDs=True)
receptor_is_not_valid = receptor.prepare_for_scoring(filestore + "/4_SMINA_data")
if(receptor_is_not_valid):
print("There is something wrong with the receptor file... Check the logs! Aborting...")
sys.exit(0)
if verbose: print("Performing peptide refinement and scoring. This may take a while...")
arg_list = []
for i, pep_index in enumerate(loop_index_list):
arg_list.append((pep_index, template_index_list[i], new_index_list[i], rcd_num_loops, peptide, filestore,
receptor, anchor_filtering_data_dict[template_index_list[i]][1],
anchor_filtering_data_dict[template_index_list[i]][0], anchor_tol))
with WorkerPool(n_jobs=num_cores) as pool:
results = pool.map(peptide_refinement_and_scoring, arg_list, progress_bar=verbose)
# Code for non-parallel execution and debugging
#for argument in arg_list:
# print(argument)
# peptide_refinement_and_scoring(argument[0], argument[1], argument[2], argument[3], argument[4], argument[5], argument[6], argument[7], argument[8])
# Print and keep statistics
best_conf_dir = filestore + '/4_SMINA_data'
if verbose: print("\n\nEnd of main workflow !!!")
create_csv_from_list_of_files(filestore + '/4_SMINA_data/total_results.csv', glob.glob(filestore + '/4_SMINA_data/05_per_peptide_results/*.log'))
results_csv = pretty_print_analytics(filestore + '/4_SMINA_data/total_results.csv', verbose=verbose)
results_csv.to_csv(temp_files_storage + '/successful_conformations_statistics.csv', index=False)
# OpenMM step
if(score_with_openmm and results_csv.shape[0] > 0):
if verbose: print("\n\nOpennMM optimization!\n")
dir_list = ['/6_final_conformations/', '/5_openMM_conformations']
subdir_list = ['/fixed_receptors', '/14_minimized_complexes', '/10_pMHC_complexes',
'/11_pMHC_before_sim', '/13_connected_pMHC_complexes', '/12_PTM_conect_indexes',
'/06_scoring_results', '/05_per_peptide_results', '/09_minimized_receptors',
'/08_anchor_filtering', '/04_pdbqt_peptides', '/07_flexible_receptors']
initialize_dir([filestore + dir for dir in dir_list])
initialize_dir([filestore + '/5_openMM_conformations' + subdir for subdir in subdir_list])
successful_confs = results_csv['Peptide index'].tolist()
if verbose: print("Preparing input for OpenMM optimization. This may take a while...")
# First prepare for OpenMM
arg_list = list(map(lambda e: (e, filestore, peptide), successful_confs))
with WorkerPool(n_jobs=min(num_cores, len(successful_confs))) as pool:
results = pool.map(prepare_for_openmm, arg_list, progress_bar=verbose)
# Actual minimization step
if verbose:
print("\nMinimizing energy...")
if no_constraints_openmm: print("Removing backbone constraints from energy minimization!")
disable_progress_bar = False
leave_progress_bar = False
else:
disable_progress_bar = True
leave_progress_bar = True
for conf_index in tqdm(successful_confs, desc="pMHC conf", position=0, disable=disable_progress_bar):
numTries = 1
best_energy = float("inf")
pMHC_complex = pMHC(pdb_filename=filestore + "/5_openMM_conformations/13_connected_pMHC_complexes/pMHC_" + conf_index + ".pdb",
peptide=peptide)
for minimization_effort in tqdm(range(1, numTries + 1), desc="No. of tries", position=1,
leave=leave_progress_bar, disable=disable_progress_bar):
best_energy = pMHC_complex.minimizeConf(filestore, best_energy, no_constraints_openmm, device)
with open(filestore + "/5_openMM_conformations/05_per_peptide_results/peptide_" + conf_index + ".log", 'w') as peptide_handler:
peptide_handler.write(conf_index + ",Successfully Modeled," + str(best_energy) + "\n")
# Rescoring and re-filtering resulting conformations
if verbose: print("\nRescoring and re-filtering resulting conformations:")
#arg_list = list(map(lambda conf_index: (conf_index, filestore, rcd_num_loops, peptide_template_anchors_xyz, anchor_tol, tolerance_anchors, min_with_smina), successful_confs))
arg_list = []
for conf_index in successful_confs:
arg_list.append((conf_index, filestore, rcd_num_loops, anchor_filtering_data_dict[int(conf_index[0])][0],
anchor_tol, anchor_filtering_data_dict[int(conf_index[0])][1], min_with_smina))
with WorkerPool(n_jobs=min(num_cores, len(successful_confs))) as pool:
results = pool.map(rescoring_after_openmm, arg_list, progress_bar=verbose)
copy_batch_of_files(filestore + '/5_openMM_conformations/10_pMHC_complexes/',
filestore + '/6_final_conformations/',
query="pMHC_")
best_conf_dir = filestore + '/5_openMM_conformations'
if verbose: print("\n\nEnd of OpenMM step !!!")
create_csv_from_list_of_files(filestore + '/5_openMM_conformations/total_results.csv', glob.glob(filestore + '/5_openMM_conformations/05_per_peptide_results/*.log'))
results_csv = pretty_print_analytics(filestore + '/5_openMM_conformations/total_results.csv', verbose=verbose)
results_csv.to_csv(filestore + '/5_openMM_conformations/successful_conformations_statistics.csv', index=False)
results_csv.to_csv(temp_files_storage + '/successful_conformations_statistics.csv', index=False)
else:
initialize_dir(filestore + '/5_final_conformations/')
copy_batch_of_files(filestore + '/4_SMINA_data/10_pMHC_complexes/',
filestore + '/5_final_conformations',
query="pMHC_")
# Control whether there are no conformations. If they do, store the best one and continue.
# If not, either abort or force restart (for round one)
if(results_csv.shape[0] == 0):
print('No conformations were produced...')
else:
# Storing the best conformation
best_energy = results_csv['Affinity'].astype('float').min()
best_conformation = results_csv[results_csv['Affinity'].astype('float') == best_energy]
best_conformation_index = best_conformation['Peptide index'].values[0]
if verbose: print("\nStoring best conformation no. " + str(best_conformation_index) + " with Affinity = " + str(best_energy))
copy_file(best_conf_dir + '/10_pMHC_complexes/pMHC_' + str(best_conformation_index) + '.pdb',
best_conf_dir + '/min_energy_system.pdb')
copy_file(best_conf_dir + '/05_per_peptide_results/peptide_' + str(best_conformation_index) + '.log',
best_conf_dir + '/min_energy.log')
# Delete intermediate files if flag is true
if not keep_all_files:
dir_list = ['/4_SMINA_data', '/3_RCD_data', '/2_input_to_RCD', '/1_alignment_files']
if(score_with_openmm and results_csv.shape[0] > 0):
dir_list.append('/5_openMM_conformations')
remove_dirs([filestore + dir for dir in dir_list])
print("\n\nEnd of APE-Gen")
if __name__ == "__main__":
apegen(sys.argv[1:])