-
Notifications
You must be signed in to change notification settings - Fork 31
/
config.py
57 lines (53 loc) · 2.12 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# if train_or_eval = True then 训练 else 测试
train_or_eval = True
# train_or_eval = True
if train_or_eval is not True:
# 测试的配置
task = 'denoising'
dataset_dir = './evaluate/test_middle'
dataset_gtc_dir = './evaluate/frames_light_test_JPEG' # 测试gtc图片包括边缘图edge的路径
out_img_dir = './evaluate' # 实验结果存放位置
pathlistfile = './evaluate/test_light.txt' # 测试的图片的具体路径
model_path = './toflow_models_mine/denoising_best.pkl' # 新模型
gpuID = 2 # map_location='cuda:1' 在evaluate.py里面设置
map_location = 'cuda:2'
BATCH_SIZE = 1
h = 888
w = 888
N = 7 # 7张图片
else:
# 训练的配置
task = 'denoising'
edited_img_dir = '/data/mxy/data/light_train' # 训练输入的图片的文件夹
dataset_dir = '/data/mxy/data/light_train'
pathlistfile = '/data/mxy/data/train_light.txt' # 训练的图片的具体路径
visualize_root = './visualization_mine/' # 存放展示结果的文件夹
visualize_pathlist = ['00001/4'] # 需要展示训练结果的训练图片所在的小文件夹
checkpoints_root = './checkpoints_mine' # 训练过程中产生的检查点的存放位置
model_besaved_root = 'toflow_models_mine' # best_model 和 final_model 的参数的保存位置
model_best_name = '_best.pkl'
model_final_name = '_final.pkl'
gpuID = 3
# Hyper Parameters
if task == 'interp':
LR = 3 * 1e-5
elif task in ['denoise', 'denoising', 'sr', 'super-resolution']:
# LR = 1 * 1e-5
LR = 0.0001
EPOCH = 140
WEIGHT_DECAY = 1e-4
BATCH_SIZE = 1
LR_strategy = []
# h = 888
# w = 888
h = 320
w = 320
N = 7 # 输入7张图片
l1_loss_weight = 0.75
ssim_weight = 1.0
use_checkpoint = False # 一开始不使用已有的检查点
checkpoint_exited_path = './checkpoints_mine/checkpoints_20epoch.ckpt' # 已有的检查点
work_place = '.'
model_name = task
Training_pic_path = 'toflow_models_mine/Training_result_mine_maxoper.jpg'
model_information_txt = model_name + '_information.txt'