-
Notifications
You must be signed in to change notification settings - Fork 31
/
architect_enhance.py
89 lines (72 loc) · 3.77 KB
/
architect_enhance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import torch
import numpy as np
import torch.nn as nn
from torch.autograd import Variable
def _concat(xs):
return torch.cat([x.view(-1) for x in xs])
class Architect(object):
def __init__(self, model, args):
self.network_momentum = args.momentum
self.network_weight_decay = args.weight_decay
self.model = model
self.optimizer = torch.optim.Adam(self.model.enhance_arch_parameters(),
lr=args.arch_learning_rate, betas=(0.5, 0.999),
weight_decay=args.arch_weight_decay)
def _compute_unrolled_model(self, input, target, eta, network_optimizer):
loss = self.model._enhcence_loss(input, target)
theta = _concat(self.model.enhance_net_parameters()).data
try:
moment = _concat(
network_optimizer.state[v]['momentum_buffer'] for v in self.model.enhance_net_parameters()).mul_(
self.network_momentum)
except:
moment = torch.zeros_like(theta)
dtheta = _concat(
torch.autograd.grad(loss, self.model.enhance_net_parameters())).data + self.network_weight_decay * theta
unrolled_model = self._construct_model_from_theta(theta.sub(eta, moment + dtheta))
return unrolled_model
def step(self, input_train, target_train, input_valid, target_valid, eta, network_optimizer, unrolled):
self.optimizer.zero_grad()
if unrolled:
self._backward_step_unrolled(input_train, target_train, input_valid, target_valid, eta, network_optimizer)
else:
self._backward_step(input_valid, target_valid)
self.optimizer.step()
def _backward_step(self, input_valid, target_valid):
loss = self.model._enhance_arch_loss(input_valid, target_valid)
loss.backward()
def _backward_step_unrolled(self, input_train, target_train, input_valid, target_valid, eta, network_optimizer):
unrolled_model = self._compute_unrolled_model(input_train, target_train, eta, network_optimizer)
unrolled_loss = unrolled_model._enhance_arch_loss(input_valid, target_valid)
unrolled_loss.backward()
dalpha = [v.grad for v in unrolled_model.enhance_arch_parameters()]
vector = [v.grad.data for v in unrolled_model.enhance_net_parameters()]
implicit_grads = self._hessian_vector_product(vector, input_train, target_train)
for g, ig in zip(dalpha, implicit_grads):
g.data.sub_(eta, ig.data)
for v, g in zip(self.model.enhance_arch_parameters(), dalpha):
if v.grad is None:
v.grad = Variable(g.data)
else:
v.grad.data.copy_(g.data)
def _construct_model_from_theta(self, theta):
model_new = self.model.new()
params, offset = {}, 0
for v in model_new.enhance_net_parameters():
v_length = np.prod(v.size())
v.data.copy_(theta[offset: offset + v_length].view(v.size()))
offset += v_length
return model_new.cuda()
def _hessian_vector_product(self, vector, input, target, r=1e-2):
R = r / _concat(vector).norm()
for p, v in zip(self.model.enhance_net_parameters(), vector):
p.data.add_(R, v)
loss = self.model._enhance_arch_loss(input, target)
grads_p = torch.autograd.grad(loss, self.model.enhance_arch_parameters())
for p, v in zip(self.model.enhance_net_parameters(), vector):
p.data.sub_(2 * R, v)
loss = self.model._enhance_arch_loss(input, target)
grads_n = torch.autograd.grad(loss, self.model.enhance_arch_parameters())
for p, v in zip(self.model.enhance_net_parameters(), vector):
p.data.add_(R, v)
return [(x - y).div_(2 * R) for x, y in zip(grads_p, grads_n)]