-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbpn.cpp
300 lines (221 loc) · 7 KB
/
bpn.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#include "bpn.h"
double computeFuncH(double x , Type t){
if(t == Linear)
return x;
if(t == Sigmoidal)
return 1 / (exp(-x) + 1);
}
double computeDiffH(double x , Type t){
if(t == Linear)
return 1;
else{
double sig = computeFuncH(x , t);
return sig * (1 - sig);
}
}
void getLevelNodes(BPN *network , int level , double** z , double** a , double** bias, double** delta , int* size){
int start = 0;
for(int i = 0 ; i < level ; i ++){
start += network->nodeSize[i];
}
*size = network->nodeSize[level];
if(z != NULL)
*z = network->z_val + start;
if(a != NULL)
*a = network->a_val + start;
if(bias != NULL)
*bias = network->bias + start;
if(delta != NULL)
*delta = network->delta + start;
return;
}
void getLevelWeights(BPN* network , int level , double** weights , int* size , int* length){
if(level == network->noLevels - 1)
return;
int start = 0;
for(int i = 0 ; i < level ; i ++){
start += network->nodeSize[i] * network->nodeSize[i + 1];
}
*size = network->nodeSize[level + 1];
*length = network->nodeSize[level];
*weights = network->weight + start;
return;
}
void forward_propagate_level(int level , BPN *network , double* input){
if(level == network->noLevels - 1){//input layer
if(input == NULL)
return;
double *z , *a , *bias;
int size;
getLevelNodes(network , level , &z , &a , &bias , NULL , &size);
for(int i = 0 ; i < size ; i ++){
a[i] = input[i];
z[i] = a[i] + bias[i];
}
/*DEBUG
printf("\nDEBUG:\n");
for(int i = 0 ; i < size ; i ++)
printf("%f \n" , z[i]);
DEBUG COMPLETE*/
return;
}
double *z_prev , *weight , *a_curr , *z_curr , *bias_curr;
int size , sizePrev;
getLevelWeights(network , level , &weight , &sizePrev , &size);
getLevelNodes(network , level + 1 , &z_prev , NULL , NULL , NULL , &sizePrev);
getLevelNodes(network , level , &z_curr , &a_curr , &bias_curr , NULL , &size);
for(int i = 0 ; i < size ; i ++){
a_curr[i] = 0;
for(int j = 0 ; j < sizePrev ; j ++){
a_curr[i] += *(weight + i * sizePrev + j) * z_prev[j];
}
a_curr[i] += bias_curr[i];
z_curr[i] = computeFuncH(a_curr[i] , network->type[level]);
}
/*DEBUG
printf("\nDEBUG:\n");
for(int i = 0 ; i < size ; i ++)
printf("%f \n" , z_curr[i]);
DEBUG COMPLETE*/
return;
}
void reverse_propagate_level(int level , BPN *network , double* target){
double *weight_next , *delta_curr , *delta_next , *z_curr , *a_curr;
int size , size_next;
if(level == 0){//output level
if(target == NULL)
return;
getLevelNodes(network , level , &z_curr , &a_curr , NULL , &delta_curr , &size);
for(int i = 0 ; i < size ; i ++)
delta_curr[i] = (z_curr[i] - target[i]) * computeDiffH(a_curr[i] , network->type[level]);
return;
}
getLevelWeights(network , level - 1 , &weight_next , &size , &size_next);
getLevelNodes(network , level , NULL , &a_curr , NULL , &delta_curr , &size);
getLevelNodes(network , level - 1 , NULL , NULL , NULL , &delta_next , &size_next);
for(int i = 0 ; i < size ; i ++){
delta_curr[i] = 0;
for(int j = 0 ; j < size_next ; j ++)
delta_curr[i] += delta_next[j] * *(weight_next + j * size + i);
delta_curr[i] *= computeDiffH(a_curr[i] , network->type[level]);
}
return;
}
void weight_bias_update(BPN *network){
double *weight = network->weight;
double *delta = network->delta;
double *z_prev = network->z_val + network->nodeSize[0];
double *bias = network->bias;
for(int i = 0 ; i < network->noLevels - 1; i ++){
for(int j = 0 ; j < network->nodeSize[i] ; j ++){
for(int k = 0 ; k < network->nodeSize[i + 1] ; k ++){
*(weight + j * network->nodeSize[i + 1] + k) -= network->training_rate * *(delta + j) * *(z_prev + k);
}
*(bias + j) -= network->training_rate * *(delta + j);
}
weight += network->nodeSize[i] * network->nodeSize[i + 1];
delta += network->nodeSize[i];
z_prev += network->nodeSize[i + 1];
bias += network->nodeSize[i];
}
}
void forward(BPN* network , double* input){
for(int i = network->noLevels - 1 ; i > -1 ; i --){
if(i == network->noLevels - 1){
forward_propagate_level(i , network , input);
continue;
}
forward_propagate_level(i , network , NULL);
}
}
double reverse(BPN* network , double* target){
for(int i = 0 ; i < network->noLevels - 1 ; i ++){
if(i == 0)
reverse_propagate_level(i , network , target);
else
reverse_propagate_level(i , network , NULL);
}
double error = 0;
for(int i = 0 ; i < network->nodeSize[0] ; i ++){
error += (target[i] - network->z_val[i]) * (target[i] - network->z_val[i]);
}
return error;
}
int train(BPN* network , double* input , double* output , int dataset_no , int input_size , int output_size , int total_iterations){
double error;
double *ip , *op;
int count = 0;
if(total_iterations == -1)
total_iterations = 1000;
while(true){
error = 0;
ip = input;
op = output;
for(int i = 0 ; i < dataset_no ; i ++){
forward(network , ip);
error += reverse(network , op);
weight_bias_update(network);
ip = ip + input_size;
op = op + output_size;
}
// printf("\nError:%f\n" , error);
if(error < THRES || count == total_iterations)
break;
count ++;
}
return count;
}
void initialize(BPN* network , int* noNodes , int levels , Type* type , double rate){
network->noLevels = levels;
network->nodeSize = new int[levels];
network->type = new Type[levels];
network->training_rate = rate;
for(int i = 0 ; i < levels ; i ++){
network->nodeSize[i] = noNodes[i];
network->type[i] = type[i];
}
int numNodes = 0;
int numWeights = 0;
for(int i = 0 ; i < levels ; i ++){
numNodes += noNodes[i];
if(i == 0)
continue;
numWeights += noNodes[i] * noNodes[i - 1];
}
network->a_val = new double[numNodes];
network->z_val = new double[numNodes];
network->delta = new double[numNodes];
network->bias = new double[numNodes];
network->weight = new double[numWeights];
network->noNodes = numNodes;
network->noWeight = numWeights;
time_t t;
srand((unsigned)time(&t));
for(int i = 0 ; i < numWeights ; i ++){
double wt_in = (double)(rand() % 50) / 10000.0;
wt_in = wt_in == 0.0 ? 0.0001 : wt_in;
network->weight[i] = wt_in;
if(i < numNodes){
double nd_in = (double)(rand() % 50) / 10000.0;
nd_in = nd_in == 0.0 ? 0.0001 : nd_in;
network->a_val[i] = nd_in;
network->z_val[i] = nd_in;
network->bias[i] = nd_in;
network->delta[i] = nd_in;
}
}
if(numWeights == 2){//If number of weight connections is true, then no-weights = no-nodes + 1
network->a_val[2] = 0.0001;
network->z_val[2] = 0.0001;
network->bias[2] = 0.0001;
network->delta[2] = 0.0001;
}
}
void returnOutput(BPN* network , double* input , double* output){
int size = network->nodeSize[0];
forward(network , input);
for(int i = 0 ; i < size ; i ++){
output[i] = network->z_val[i];
}
return;
}