-
Notifications
You must be signed in to change notification settings - Fork 104
/
ddp_model.py
188 lines (167 loc) · 8.97 KB
/
ddp_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import torch
import torch.nn as nn
# import torch.nn.functional as F
# import numpy as np
from utils import TINY_NUMBER, HUGE_NUMBER
from collections import OrderedDict
from nerf_network import Embedder, MLPNet
import os
import logging
logger = logging.getLogger(__package__)
######################################################################################
# wrapper to simplify the use of nerfnet
######################################################################################
def depth2pts_outside(ray_o, ray_d, depth):
'''
ray_o, ray_d: [..., 3]
depth: [...]; inverse of distance to sphere origin
'''
# note: d1 becomes negative if this mid point is behind camera
d1 = -torch.sum(ray_d * ray_o, dim=-1) / torch.sum(ray_d * ray_d, dim=-1)
p_mid = ray_o + d1.unsqueeze(-1) * ray_d
p_mid_norm = torch.norm(p_mid, dim=-1)
ray_d_cos = 1. / torch.norm(ray_d, dim=-1)
d2 = torch.sqrt(1. - p_mid_norm * p_mid_norm) * ray_d_cos
p_sphere = ray_o + (d1 + d2).unsqueeze(-1) * ray_d
rot_axis = torch.cross(ray_o, p_sphere, dim=-1)
rot_axis = rot_axis / torch.norm(rot_axis, dim=-1, keepdim=True)
phi = torch.asin(p_mid_norm)
theta = torch.asin(p_mid_norm * depth) # depth is inside [0, 1]
rot_angle = (phi - theta).unsqueeze(-1) # [..., 1]
# now rotate p_sphere
# Rodrigues formula: https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula
p_sphere_new = p_sphere * torch.cos(rot_angle) + \
torch.cross(rot_axis, p_sphere, dim=-1) * torch.sin(rot_angle) + \
rot_axis * torch.sum(rot_axis*p_sphere, dim=-1, keepdim=True) * (1.-torch.cos(rot_angle))
p_sphere_new = p_sphere_new / torch.norm(p_sphere_new, dim=-1, keepdim=True)
pts = torch.cat((p_sphere_new, depth.unsqueeze(-1)), dim=-1)
# now calculate conventional depth
depth_real = 1. / (depth + TINY_NUMBER) * torch.cos(theta) * ray_d_cos + d1
return pts, depth_real
class NerfNet(nn.Module):
def __init__(self, args):
super().__init__()
# foreground
self.fg_embedder_position = Embedder(input_dim=3,
max_freq_log2=args.max_freq_log2 - 1,
N_freqs=args.max_freq_log2)
self.fg_embedder_viewdir = Embedder(input_dim=3,
max_freq_log2=args.max_freq_log2_viewdirs - 1,
N_freqs=args.max_freq_log2_viewdirs)
self.fg_net = MLPNet(D=args.netdepth, W=args.netwidth,
input_ch=self.fg_embedder_position.out_dim,
input_ch_viewdirs=self.fg_embedder_viewdir.out_dim,
use_viewdirs=args.use_viewdirs)
# background; bg_pt is (x, y, z, 1/r)
self.bg_embedder_position = Embedder(input_dim=4,
max_freq_log2=args.max_freq_log2 - 1,
N_freqs=args.max_freq_log2)
self.bg_embedder_viewdir = Embedder(input_dim=3,
max_freq_log2=args.max_freq_log2_viewdirs - 1,
N_freqs=args.max_freq_log2_viewdirs)
self.bg_net = MLPNet(D=args.netdepth, W=args.netwidth,
input_ch=self.bg_embedder_position.out_dim,
input_ch_viewdirs=self.bg_embedder_viewdir.out_dim,
use_viewdirs=args.use_viewdirs)
def forward(self, ray_o, ray_d, fg_z_max, fg_z_vals, bg_z_vals):
'''
:param ray_o, ray_d: [..., 3]
:param fg_z_max: [...,]
:param fg_z_vals, bg_z_vals: [..., N_samples]
:return
'''
# print(ray_o.shape, ray_d.shape, fg_z_max.shape, fg_z_vals.shape, bg_z_vals.shape)
ray_d_norm = torch.norm(ray_d, dim=-1, keepdim=True) # [..., 1]
viewdirs = ray_d / ray_d_norm # [..., 3]
dots_sh = list(ray_d.shape[:-1])
######### render foreground
N_samples = fg_z_vals.shape[-1]
fg_ray_o = ray_o.unsqueeze(-2).expand(dots_sh + [N_samples, 3])
fg_ray_d = ray_d.unsqueeze(-2).expand(dots_sh + [N_samples, 3])
fg_viewdirs = viewdirs.unsqueeze(-2).expand(dots_sh + [N_samples, 3])
fg_pts = fg_ray_o + fg_z_vals.unsqueeze(-1) * fg_ray_d
input = torch.cat((self.fg_embedder_position(fg_pts),
self.fg_embedder_viewdir(fg_viewdirs)), dim=-1)
fg_raw = self.fg_net(input)
# alpha blending
fg_dists = fg_z_vals[..., 1:] - fg_z_vals[..., :-1]
# account for view directions
fg_dists = ray_d_norm * torch.cat((fg_dists, fg_z_max.unsqueeze(-1) - fg_z_vals[..., -1:]), dim=-1) # [..., N_samples]
fg_alpha = 1. - torch.exp(-fg_raw['sigma'] * fg_dists) # [..., N_samples]
T = torch.cumprod(1. - fg_alpha + TINY_NUMBER, dim=-1) # [..., N_samples]
bg_lambda = T[..., -1]
T = torch.cat((torch.ones_like(T[..., 0:1]), T[..., :-1]), dim=-1) # [..., N_samples]
fg_weights = fg_alpha * T # [..., N_samples]
fg_rgb_map = torch.sum(fg_weights.unsqueeze(-1) * fg_raw['rgb'], dim=-2) # [..., 3]
fg_depth_map = torch.sum(fg_weights * fg_z_vals, dim=-1) # [...,]
# render background
N_samples = bg_z_vals.shape[-1]
bg_ray_o = ray_o.unsqueeze(-2).expand(dots_sh + [N_samples, 3])
bg_ray_d = ray_d.unsqueeze(-2).expand(dots_sh + [N_samples, 3])
bg_viewdirs = viewdirs.unsqueeze(-2).expand(dots_sh + [N_samples, 3])
bg_pts, _ = depth2pts_outside(bg_ray_o, bg_ray_d, bg_z_vals) # [..., N_samples, 4]
input = torch.cat((self.bg_embedder_position(bg_pts),
self.bg_embedder_viewdir(bg_viewdirs)), dim=-1)
# near_depth: physical far; far_depth: physical near
input = torch.flip(input, dims=[-2,])
bg_z_vals = torch.flip(bg_z_vals, dims=[-1,]) # 1--->0
bg_dists = bg_z_vals[..., :-1] - bg_z_vals[..., 1:]
bg_dists = torch.cat((bg_dists, HUGE_NUMBER * torch.ones_like(bg_dists[..., 0:1])), dim=-1) # [..., N_samples]
bg_raw = self.bg_net(input)
bg_alpha = 1. - torch.exp(-bg_raw['sigma'] * bg_dists) # [..., N_samples]
# Eq. (3): T
# maths show weights, and summation of weights along a ray, are always inside [0, 1]
T = torch.cumprod(1. - bg_alpha + TINY_NUMBER, dim=-1)[..., :-1] # [..., N_samples-1]
T = torch.cat((torch.ones_like(T[..., 0:1]), T), dim=-1) # [..., N_samples]
bg_weights = bg_alpha * T # [..., N_samples]
bg_rgb_map = torch.sum(bg_weights.unsqueeze(-1) * bg_raw['rgb'], dim=-2) # [..., 3]
bg_depth_map = torch.sum(bg_weights * bg_z_vals, dim=-1) # [...,]
# composite foreground and background
bg_rgb_map = bg_lambda.unsqueeze(-1) * bg_rgb_map
bg_depth_map = bg_lambda * bg_depth_map
rgb_map = fg_rgb_map + bg_rgb_map
ret = OrderedDict([('rgb', rgb_map), # loss
('fg_weights', fg_weights), # importance sampling
('bg_weights', bg_weights), # importance sampling
('fg_rgb', fg_rgb_map), # below are for logging
('fg_depth', fg_depth_map),
('bg_rgb', bg_rgb_map),
('bg_depth', bg_depth_map),
('bg_lambda', bg_lambda)])
return ret
def remap_name(name):
name = name.replace('.', '-') # dot is not allowed by pytorch
if name[-1] == '/':
name = name[:-1]
idx = name.rfind('/')
for i in range(2):
if idx >= 0:
idx = name[:idx].rfind('/')
return name[idx + 1:]
class NerfNetWithAutoExpo(nn.Module):
def __init__(self, args, optim_autoexpo=False, img_names=None):
super().__init__()
self.nerf_net = NerfNet(args)
self.optim_autoexpo = optim_autoexpo
if self.optim_autoexpo:
assert(img_names is not None)
logger.info('Optimizing autoexposure!')
self.img_names = [remap_name(x) for x in img_names]
logger.info('\n'.join(self.img_names))
self.autoexpo_params = nn.ParameterDict(OrderedDict([(x, nn.Parameter(torch.Tensor([0.5, 0.]))) for x in self.img_names]))
def forward(self, ray_o, ray_d, fg_z_max, fg_z_vals, bg_z_vals, img_name=None):
'''
:param ray_o, ray_d: [..., 3]
:param fg_z_max: [...,]
:param fg_z_vals, bg_z_vals: [..., N_samples]
:return
'''
ret = self.nerf_net(ray_o, ray_d, fg_z_max, fg_z_vals, bg_z_vals)
if img_name is not None:
img_name = remap_name(img_name)
if self.optim_autoexpo and (img_name in self.autoexpo_params):
autoexpo = self.autoexpo_params[img_name]
scale = torch.abs(autoexpo[0]) + 0.5 # make sure scale is always positive
shift = autoexpo[1]
ret['autoexpo'] = (scale, shift)
return ret