Skip to content
/ DTCR Public

Tensorflow implementation of paper 'Learning Representations for Time Series Clustering' (NIPS 2019 accept paper).

Notifications You must be signed in to change notification settings

KMdsy/DTCR

Repository files navigation

Read me file

Chinese version

Tensorflow implementation of paper 'Learning Representations for Time Series Clustering' (NIPS 2019 accept paper). This code is not the official version.

Details

Ma, Q., Zheng, J., Li, S., & Cottrell, G. W. (2019). Learning representations for time series clustering. In Advances in neural information processing systems (pp. 3781-3791).

Bibtex

@inproceedings{ma2019learning,
  title={Learning representations for time series clustering},
  author={Ma, Qianli and Zheng, Jiawei and Li, Sen and Cottrell, Gary W},
  booktitle={Advances in neural information processing systems},
  pages={3781--3791},
  year={2019}
}

Some results

RI (Rand Index) is employed as performance (same as the paper). I used this version of the RI implementation since there is no official implementation method in sklearn package.

I run each experiment runs 5 times and report means and stand deviations. The best column represents the best performance in all the experiments. The paper column lists the RI reported by the paper.

Configs

Config1:encoder_hidden_units = [100, 50, 50], lambda = 1,

Config2:encoder_hidden_units = [100, 50, 50], lambda = 0.1,

Config3:encoder_hidden_units = [100, 50, 50], lambda = 0.01,

Config4:encoder_hidden_units = [100, 50, 50], lambda = 0.001,

Config5:encoder_hidden_units = [50, 30, 30], lambda = 1,

Config6:encoder_hidden_units = [50, 30, 30], lambda = 0.1,

Config7:encoder_hidden_units = [50, 30, 30], lambda = 0.01,

Config8:encoder_hidden_units = [50, 30, 30], lambda = 0.001.

Results

Data preprocessing method: N/A

Dataset config1 config2 config3 config4 config5 config6 config7 config8 best paper
ArrowHead 0.63103 ± 0.04962 0.64632 ± 0.02547 0.6402 ± 0.04928 0.66869 ± 0.02821 0.6562 ± 0.0493 0.67823 ± 0.04251 0.64906 ± 0.05363 0.6529 ± 0.03482 0.74023 0.6868 ± 0.0026
Beef 0.7669 ± 0.02558 0.76644 ± 0.02347 0.77471 ± 0.02122 0.77793 ± 0.02044 0.7577 ± 0.00926 0.74897 ± 0.00958 0.75954 ± 0.01854 0.76 ± 0.01204 0.81609 0.8046 ± 0.0018
BeetleFly 0.60526 ± 0 0.61684 ± 0.02316 0.68737 ± 0.10056 0.60526 ± 0 0.60526 ± 0 0.60526 ± 0 0.63053 ± 0.05053 0.67158 ± 0.08497 0.81052 0.9000 ± 0.0001
BirdChicken 0.66211 ± 0.07688 0.58211 ± 0.08346 0.74737 ± 0.03158 0.67632 ± 0.10017 0.54737 ± 0.06781 0.57789 ± 0.10082 0.59684 ± 0.06451 0.61474 ± 0.11087 0.81053 0.8105 ± 0.0033
Car 0.64667 ± 0.03581 0.68316 ± 0.03617 0.71537 ± 0.01632 0.71797 ± 0.01905 0.6304 ± 0.02426 0.65695 ± 0.01937 0.69153 ± 0.018 0.71073 ± 0.03539 0.77401 0.75.1 ± 0.0022
ChlorineConcentration 0.52175 ± 0.01628 0.51549 ± 0.01654 0.5276 ± 0.01301 0.53374 ± 0.00277 0.5222 ± 0.01634 0.51528 ± 0.01587 0.52575 ± 0.0123 0.53555 ± 0.00072 0.53659 0.5357 ± 0.0011
Coffee 0.68624 ± 0.17581 0.65132 ± 0.12575 0.78995 ± 0.10818 0.85397 ± 0.18698 0.58942 ± 0.11309 0.60741 ± 0.04073 0.79365 ± 0.1563 0.82381 ± 0.16011 1 0.9286 ± 0.0016

Data preprocessing method: Normalized

Dataset config1 config2 config3 config4 config5 config6 config7 config8 best paper
ArrowHead 0.61923 ± 0.05194 0.61398 ± 0.04337 0.65328 ± 0.02648 0.66475 ± 0.03845 0.6055 ± 0.03643 0.65639 ± 0.03132 0.67137 ± 0.02044 0.66328 ± 0.03323 0.71278 0.6868 ± 0.0026
Beef 0.70713 ± 0.00892 0.70575 ± 0.00497 0.71667 ± 0.01364 0.72337 ± 0.00217 0.70851 ± 0.01202 0.72138 ± 0.01457 0.71552 ± 0.01791 0.72414 ± 0.00291 0.74483 0.8046 ± 0.0018
BeetleFly 0.71842 ± 0.16428 0.67105 ± 0.08392 0.73509 ± 0.06021 0.74211 ± 0.09676 0.62842 ± 0.02836 0.75789 ± 0.10771 0.66421 ± 0.11789 0.74211 ± 0.10458 1 0.9000 ± 0.0001
BirdChicken 0.53579 ± 0.05702 0.58596 ± 0.05674 0.64511 ± 0.09452 0.67193 ± 0.08203 0.50877 ± 0.02796 0.56632 ± 0.09342 0.65 ± 0.10556 0.64868 ± 0.02507 0.81053 0.8105 ± 0.0033
Car 0.70927 ± 0.01742 0.71119 ± 0.02797 0.72249 ± 0.02928 0.7096 ± 0.02585 0.69085 ± 0.01935 0.70395 ± 0.01768 0.71073 ± 0.03181 0.71921 ± 0.01226 0.77288 0.75.1 ± 0.0022
ChlorineConcentration 0.50288 ± 0.00019 0.50821 ± 0.01159 0.51451 ± 0.0144 0.53447 ± 0.00096 0.50255 ± 0.00008 0.5083 ± 0.01156 0.51469 ± 0.01472 0.53519 ± 0.00106 0.053889 0.5357 ± 0.0011

Requirements

Tensorflow>=1.13.2

About

Tensorflow implementation of paper 'Learning Representations for Time Series Clustering' (NIPS 2019 accept paper).

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages