Tensorflow implementation of paper 'Learning Representations for Time Series Clustering' (NIPS 2019 accept paper). This code is not the official version.
Details
Ma, Q., Zheng, J., Li, S., & Cottrell, G. W. (2019). Learning representations for time series clustering. In Advances in neural information processing systems (pp. 3781-3791).
Bibtex
@inproceedings{ma2019learning,
title={Learning representations for time series clustering},
author={Ma, Qianli and Zheng, Jiawei and Li, Sen and Cottrell, Gary W},
booktitle={Advances in neural information processing systems},
pages={3781--3791},
year={2019}
}
RI (Rand Index) is employed as performance (same as the paper). I used this version of the RI implementation since there is no official implementation method in sklearn package.
I run each experiment runs 5 times and report means and stand deviations.
The best
column represents the best performance in all the experiments.
The paper
column lists the RI reported by the paper.
Config1:encoder_hidden_units = [100, 50, 50], lambda = 1,
Config2:encoder_hidden_units = [100, 50, 50], lambda = 0.1,
Config3:encoder_hidden_units = [100, 50, 50], lambda = 0.01,
Config4:encoder_hidden_units = [100, 50, 50], lambda = 0.001,
Config5:encoder_hidden_units = [50, 30, 30], lambda = 1,
Config6:encoder_hidden_units = [50, 30, 30], lambda = 0.1,
Config7:encoder_hidden_units = [50, 30, 30], lambda = 0.01,
Config8:encoder_hidden_units = [50, 30, 30], lambda = 0.001.
Data preprocessing method: N/A
Dataset | config1 | config2 | config3 | config4 | config5 | config6 | config7 | config8 | best | paper |
---|---|---|---|---|---|---|---|---|---|---|
ArrowHead | 0.63103 ± 0.04962 | 0.64632 ± 0.02547 | 0.6402 ± 0.04928 | 0.66869 ± 0.02821 | 0.6562 ± 0.0493 | 0.67823 ± 0.04251 | 0.64906 ± 0.05363 | 0.6529 ± 0.03482 | 0.74023 | 0.6868 ± 0.0026 |
Beef | 0.7669 ± 0.02558 | 0.76644 ± 0.02347 | 0.77471 ± 0.02122 | 0.77793 ± 0.02044 | 0.7577 ± 0.00926 | 0.74897 ± 0.00958 | 0.75954 ± 0.01854 | 0.76 ± 0.01204 | 0.81609 | 0.8046 ± 0.0018 |
BeetleFly | 0.60526 ± 0 | 0.61684 ± 0.02316 | 0.68737 ± 0.10056 | 0.60526 ± 0 | 0.60526 ± 0 | 0.60526 ± 0 | 0.63053 ± 0.05053 | 0.67158 ± 0.08497 | 0.81052 | 0.9000 ± 0.0001 |
BirdChicken | 0.66211 ± 0.07688 | 0.58211 ± 0.08346 | 0.74737 ± 0.03158 | 0.67632 ± 0.10017 | 0.54737 ± 0.06781 | 0.57789 ± 0.10082 | 0.59684 ± 0.06451 | 0.61474 ± 0.11087 | 0.81053 | 0.8105 ± 0.0033 |
Car | 0.64667 ± 0.03581 | 0.68316 ± 0.03617 | 0.71537 ± 0.01632 | 0.71797 ± 0.01905 | 0.6304 ± 0.02426 | 0.65695 ± 0.01937 | 0.69153 ± 0.018 | 0.71073 ± 0.03539 | 0.77401 | 0.75.1 ± 0.0022 |
ChlorineConcentration | 0.52175 ± 0.01628 | 0.51549 ± 0.01654 | 0.5276 ± 0.01301 | 0.53374 ± 0.00277 | 0.5222 ± 0.01634 | 0.51528 ± 0.01587 | 0.52575 ± 0.0123 | 0.53555 ± 0.00072 | 0.53659 | 0.5357 ± 0.0011 |
Coffee | 0.68624 ± 0.17581 | 0.65132 ± 0.12575 | 0.78995 ± 0.10818 | 0.85397 ± 0.18698 | 0.58942 ± 0.11309 | 0.60741 ± 0.04073 | 0.79365 ± 0.1563 | 0.82381 ± 0.16011 | 1 | 0.9286 ± 0.0016 |
Data preprocessing method: Normalized
Dataset | config1 | config2 | config3 | config4 | config5 | config6 | config7 | config8 | best | paper |
---|---|---|---|---|---|---|---|---|---|---|
ArrowHead | 0.61923 ± 0.05194 | 0.61398 ± 0.04337 | 0.65328 ± 0.02648 | 0.66475 ± 0.03845 | 0.6055 ± 0.03643 | 0.65639 ± 0.03132 | 0.67137 ± 0.02044 | 0.66328 ± 0.03323 | 0.71278 | 0.6868 ± 0.0026 |
Beef | 0.70713 ± 0.00892 | 0.70575 ± 0.00497 | 0.71667 ± 0.01364 | 0.72337 ± 0.00217 | 0.70851 ± 0.01202 | 0.72138 ± 0.01457 | 0.71552 ± 0.01791 | 0.72414 ± 0.00291 | 0.74483 | 0.8046 ± 0.0018 |
BeetleFly | 0.71842 ± 0.16428 | 0.67105 ± 0.08392 | 0.73509 ± 0.06021 | 0.74211 ± 0.09676 | 0.62842 ± 0.02836 | 0.75789 ± 0.10771 | 0.66421 ± 0.11789 | 0.74211 ± 0.10458 | 1 | 0.9000 ± 0.0001 |
BirdChicken | 0.53579 ± 0.05702 | 0.58596 ± 0.05674 | 0.64511 ± 0.09452 | 0.67193 ± 0.08203 | 0.50877 ± 0.02796 | 0.56632 ± 0.09342 | 0.65 ± 0.10556 | 0.64868 ± 0.02507 | 0.81053 | 0.8105 ± 0.0033 |
Car | 0.70927 ± 0.01742 | 0.71119 ± 0.02797 | 0.72249 ± 0.02928 | 0.7096 ± 0.02585 | 0.69085 ± 0.01935 | 0.70395 ± 0.01768 | 0.71073 ± 0.03181 | 0.71921 ± 0.01226 | 0.77288 | 0.75.1 ± 0.0022 |
ChlorineConcentration | 0.50288 ± 0.00019 | 0.50821 ± 0.01159 | 0.51451 ± 0.0144 | 0.53447 ± 0.00096 | 0.50255 ± 0.00008 | 0.5083 ± 0.01156 | 0.51469 ± 0.01472 | 0.53519 ± 0.00106 | 0.053889 | 0.5357 ± 0.0011 |
Tensorflow>=1.13.2