-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
85 lines (65 loc) · 2.62 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import torch
from torch.utils.data import DataLoader
from utils.dataset import QaTa
import utils.config as config
from torch.optim import lr_scheduler
from engine.wrapper import LanGuideMedSegWrapper
import pytorch_lightning as pl
from torchmetrics import Accuracy,Dice
from torchmetrics.classification import BinaryJaccardIndex
from pytorch_lightning.callbacks import ModelCheckpoint,EarlyStopping
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')
import argparse
def get_parser():
parser = argparse.ArgumentParser(
description='Language-guide Medical Image Segmentation')
parser.add_argument('--config',
default='./config/training.yaml',
type=str,
help='config file')
args = parser.parse_args()
assert args.config is not None
cfg = config.load_cfg_from_cfg_file(args.config)
return cfg
if __name__ == '__main__':
args = get_parser()
print("cuda:",torch.cuda.is_available())
ds_train = QaTa(csv_path=args.train_csv_path,
root_path=args.train_root_path,
tokenizer=args.bert_type,
image_size=args.image_size,
mode='train')
ds_valid = QaTa(csv_path=args.train_csv_path,
root_path=args.train_root_path,
tokenizer=args.bert_type,
image_size=args.image_size,
mode='valid')
dl_train = DataLoader(ds_train, batch_size=args.train_batch_size, shuffle=True, num_workers=args.train_batch_size)
dl_valid = DataLoader(ds_valid, batch_size=args.valid_batch_size, shuffle=False, num_workers=args.valid_batch_size)
model = LanGuideMedSegWrapper(args)
## 1. setting recall function
model_ckpt = ModelCheckpoint(
dirpath=args.model_save_path,
filename=args.model_save_filename,
monitor='val_loss',
save_top_k=1,
mode='min',
verbose=True,
)
early_stopping = EarlyStopping(monitor = 'val_loss',
patience=args.patience,
mode = 'min'
)
## 2. setting trainer
trainer = pl.Trainer(logger=True,
min_epochs=args.min_epochs,max_epochs=args.max_epochs,
accelerator='gpu',
devices=args.device,
callbacks=[model_ckpt,early_stopping],
enable_progress_bar=False,
)
## 3. start training
print('start training')
trainer.fit(model,dl_train,dl_valid)
print('done training')