-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathEnrichment.R
92 lines (53 loc) · 2.21 KB
/
Enrichment.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
library(clusterProfiler)
library(org.Hs.eg.db)
library(org.Mm.eg.db)
library(ReactomePA)
### Enrichment analysis of Epithelial subpopulations
h.all.genes = rownames(EPI)
h.all.genes.entrez = bitr(h.all.genes, fromType="SYMBOL",
toType="ENTREZID", OrgDb="org.Hs.eg.db")
h.all.genes.entrez = h.all.genes.entrez[,2]
pmarker.entrez = bitr(EPI.markers$gene, fromType="SYMBOL",
toType="ENTREZID", OrgDb="org.Hs.eg.db")
clus = data.frame(EPI.markers$gene, EPI.markers$cluster)
pmarkers.list = merge(pmarker.entrez, clus, by = 1)
sortlist = order(pmarkers.list[,3])
pmarkers.list = pmarkers.list[sortlist,]
### GO analysis
n = unique(EPI.markers$cluster)
n = length(n)
ent.list = NULL
GORes = list()
### First, run about '0'subppulation
ent.list = pmarkers.list[pmarkers.list$EPI.markers.cluster == 0, ]
ent.list = ent.list[,2]
GOenrich <- enrichGO(gene = ent.list, universe = h.all.genes.entrez, pAdjustMethod = "BH", pvalueCutoff = 0.05, readable = T, OrgDb = "org.Hs.eg.db")
GORes[1] = GOenrich
for(i in 1:n-1){
ent.list = pmarkers.list[pmarkers.list$EPI.markers.cluster == i, ]
ent.list = ent.list[,2]
GOenrich <- enrichGO(gene = ent.list, universe = h.all.genes.entrez, pAdjustMethod = "BH", pvalueCutoff = 0.05, readable = T, OrgDb = "org.Hs.eg.db")
GORes[i+1] = GOenrich
}
names(GORes) = paste(unique(EPI.markers$cluster))
as.data.frame(GORes[1])
saveRDS(GORes, file = "GORes.rds")
### Pathway analysis using Reactome DB
n = unique(EPI.markers$cluster)
n = length(n)
ent.list = NULL
PathRes = list()
### First, run about '0'subppulation
ent.list = pmarkers.list[pmarkers.list$EPI.markers.cluster == 0, ]
ent.list = ent.list[,2]
GOenrich <- enrichPathway(gene = ent.list, universe = h.all.genes.entrez, pAdjustMethod = "BH", pvalueCutoff = 0.05, readable = T)
PathRes[1] = GOenrich
for(i in 1:n-1){
ent.list = pmarkers.list[pmarkers.list$EPI.markers.cluster == i, ]
ent.list = ent.list[,2]
GOenrich <- enrichPathway(gene = ent.list, universe = h.all.genes.entrez, pAdjustMethod = "BH", pvalueCutoff = 0.05, readable = T)
PathRes[i+1] = GOenrich
}
names(PathRes) = paste(unique(EPI.markers$cluster))
as.data.frame(PathRes[1])
saveRDS(PathRes, file = "PathRes.rds")