-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathnetwork.py
220 lines (183 loc) · 9.4 KB
/
network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#!/usr/bin/python3.7
import random
import numpy as np
import torch
from torch.autograd import Variable
import torch.utils.data
import torch.nn as nn
import torch.optim as optim
from .grammar import SingleTranscriptGrammar
from .length_model import PoissonModel
# buffer for old sequences (robustness enhancement: old frames are sampled from the buffer during training)
class Buffer(object):
def __init__(self, buffer_size, n_classes):
self.features = []
self.transcript = []
self.framelabels = []
self.instance_counts = []
self.label_counts = []
self.buffer_size = buffer_size
self.n_classes = n_classes
self.next_position = 0
self.frame_selectors = []
def add_sequence(self, features, transcript, framelabels):
if len(self.features) < self.buffer_size:
# sequence data
self.features.append(features)
self.transcript.append(transcript)
self.framelabels.append(framelabels)
# statistics for prior and mean lengths
self.instance_counts.append( np.array( [ sum(np.array(transcript) == c) for c in range(self.n_classes) ] ) )
self.label_counts.append( np.array( [ sum(np.array(framelabels) == c) for c in range(self.n_classes) ] ) )
self.next_position = (self.next_position + 1) % self.buffer_size
else:
# sequence data
self.features[self.next_position] = features
self.transcript[self.next_position] = transcript
self.framelabels[self.next_position] = framelabels
# statistics for prior and mean lengths
self.instance_counts[self.next_position] = np.array( [ sum(np.array(transcript) == c) for c in range(self.n_classes) ] )
self.label_counts[self.next_position] = np.array( [ sum(np.array(framelabels) == c) for c in range(self.n_classes) ] )
self.next_position = (self.next_position + 1) % self.buffer_size
# update frame selectors
self.frame_selectors = []
for seq_idx in range(len(self.features)):
self.frame_selectors += [ (seq_idx, frame) for frame in range(self.features[seq_idx].shape[1]) ]
def random(self):
return random.choice(self.frame_selectors) # return sequence_idx and frame_idx within the sequence
def n_frames(self):
return len(self.frame_selectors)
# wrapper class to provide torch tensors for the network
class DataWrapper(torch.utils.data.Dataset):
# for each frame in the sequence, create a subsequence of length window_size
def __init__(self, sequence, window_size = 21):
self.features = []
self.labels = []
# ensure window_size is odd
if window_size % 2 == 0:
window_size += 1
self.window_size = window_size
# extract temporal window around each frame of the sequence
for frame in range(sequence.shape[1]):
left, right = max(0, frame - window_size // 2), min(sequence.shape[1], frame + 1 + window_size // 2)
tmp = np.zeros((sequence.shape[0], window_size), dtype=np.float32 )
tmp[:, window_size // 2 - (frame - left) : window_size // 2 + (right - frame)] = sequence[:, left : right]
self.features.append(np.transpose(tmp))
self.labels.append(-1) # dummy label, will be updated after Viterbi decoding
# add a sampled (windowed frame, label) pair to the data wrapper (include buffered data during training)
# @sequence the sequence from which the frame is sampled
# @label the Viterbi decoding label for the frame at frame_idx
# @frame_idx the index of the frame to sample
def add_buffered_frame(self, sequence, label, frame_idx):
left, right = max(0, frame_idx - self.window_size // 2), min(sequence.shape[1], frame_idx + 1 + self.window_size // 2)
tmp = np.zeros((sequence.shape[0], self.window_size), dtype=np.float32 )
tmp[:, self.window_size // 2 - (frame_idx - left) : self.window_size // 2 + (right - frame_idx)] = sequence[:, left : right]
self.features.append(np.transpose(tmp))
self.labels.append(label)
def __len__(self):
return len(self.features)
def __getitem__(self, idx):
assert idx < len(self)
features = torch.from_numpy( self.features[idx] )
labels = torch.from_numpy( np.array([self.labels[idx]], dtype=np.int64) )
return features, labels
class Net(nn.Module):
def __init__(self, input_dim, hidden_size, n_classes):
super(Net, self).__init__()
self.n_classes = n_classes
self.gru = nn.GRU(input_dim, hidden_size, 1, bidirectional = False, batch_first = True)
self.fc = nn.Linear(hidden_size, n_classes)
def forward(self, x):
dummy, output = self.gru(x)
output = self.fc(output)
output = nn.functional.log_softmax(output, dim=2) # tensor is of shape (batch_size, 1, features)
return output
class Forwarder(object):
def __init__(self, input_dimension, n_classes):
self.n_classes = n_classes
hidden_size = 64
self.net = Net(input_dimension, hidden_size, n_classes)
self.net.cuda()
def _forward(self, data_wrapper, batch_size = 512):
dataloader = torch.utils.data.DataLoader(data_wrapper, batch_size = batch_size, shuffle = False)
# output probability container
log_probs_list = []
# offset = 0
# forward all frames
for data in dataloader:
input, _ = data
input = input.cuda()
output = self.net(input)[0,:,:]
# print('output', output.size())
log_probs_list.append(output)
# offset += output.shape[1]
log_probs = torch.cat(log_probs_list, dim=0)
return log_probs
def forward(self, sequence, batch_size = 512):
data_wrapper = DataWrapper(sequence, window_size = 21)
return self._forward(data_wrapper)
def load_model(self, model_file):
self.net.cpu()
self.net.load_state_dict( torch.load(model_file) )
self.net.cuda()
class Trainer(Forwarder):
def __init__(self, decoder, input_dimension, n_classes, buffer_size, buffered_frame_ratio = 25):
super(Trainer, self).__init__(input_dimension, n_classes)
self.buffer = Buffer(buffer_size, n_classes)
self.decoder = decoder
self.buffered_frame_ratio = buffered_frame_ratio
self.criterion = nn.NLLLoss()
self.prior = np.ones((self.n_classes), dtype=np.float32) / self.n_classes
self.mean_lengths = np.ones((self.n_classes), dtype=np.float32)
def update_mean_lengths(self):
self.mean_lengths = np.zeros( (self.n_classes), dtype=np.float32 )
for label_count in self.buffer.label_counts:
self.mean_lengths += label_count
instances = np.zeros((self.n_classes), dtype=np.float32)
for instance_count in self.buffer.instance_counts:
instances += instance_count
# compute mean lengths (backup to average length for unseen classes)
self.mean_lengths = np.array( [ self.mean_lengths[i] / instances[i] if instances[i] > 0 else sum(self.mean_lengths) / sum(instances) for i in range(self.n_classes) ] )
def update_prior(self):
# count labels
self.prior = np.zeros((self.n_classes), dtype=np.float32)
for label_count in self.buffer.label_counts:
self.prior += label_count
self.prior = self.prior / np.sum(self.prior)
# backup to uniform probability for unseen classes
n_unseen = sum(self.prior == 0)
self.prior = self.prior * (1.0 - float(n_unseen) / self.n_classes)
self.prior = np.array( [ self.prior[i] if self.prior[i] > 0 else 1.0 / self.n_classes for i in range(self.n_classes) ] )
def train(self, sequence, transcript, batch_size = 512, learning_rate = 0.1, window = 20, step = 5):
#print('--------------------new video-----------------')
data_wrapper = DataWrapper(sequence, window_size = 21)
# forwarding and Viterbi decoding
log_probs_origin = self._forward(data_wrapper)
log_probs = log_probs_origin.data.cpu().numpy() - np.log(self.prior)
log_probs = log_probs - np.max(log_probs)
# define transcript grammar and updated length model
self.decoder.grammar = SingleTranscriptGrammar(transcript, self.n_classes)
self.decoder.length_model = PoissonModel(self.mean_lengths)
# decoding
score, labels, segments = self.decoder.decode(log_probs)
video_length = log_probs_origin.shape[0]
optimizer = optim.SGD(self.net.parameters(), lr = learning_rate / 512)
optimizer.zero_grad()
penalty = -log_probs_origin
loss1 = self.decoder.forward_score(penalty, segments, transcript, window, step)
loss2 = self.decoder.incremental_forward_score(penalty, segments, transcript, window, step)
loss = loss1 - loss2
loss.backward()
optimizer.step()
# add sequence to buffer
self.buffer.add_sequence(sequence, transcript, labels)
# update prior and mean length
self.update_prior()
self.update_mean_lengths()
return loss1 / video_length, loss2 / video_length
def save_model(self, network_file, length_file, prior_file):
self.net.cpu()
torch.save(self.net.state_dict(), network_file)
self.net.cuda()
np.savetxt(length_file, self.mean_lengths)
np.savetxt(prior_file, self.prior)