-
Notifications
You must be signed in to change notification settings - Fork 140
/
math_private.h
375 lines (323 loc) · 9.05 KB
/
math_private.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* from: @(#)fdlibm.h 5.1 93/09/24
* $FreeBSD: src/lib/msun/src/math_private.h,v 1.34 2011/10/21 06:27:56 das Exp $
*/
#ifndef _MATH_PRIVATE_H_
#define _MATH_PRIVATE_H_
#include <openlibm_complex.h>
#include <openlibm_defs.h>
#include "cdefs-compat.h"
#include "types-compat.h"
#include "fpmath.h"
#include <stdint.h>
#include "math_private_openbsd.h"
/*
* The original fdlibm code used statements like:
* n0 = ((*(int*)&one)>>29)^1; * index of high word *
* ix0 = *(n0+(int*)&x); * high word of x *
* ix1 = *((1-n0)+(int*)&x); * low word of x *
* to dig two 32 bit words out of the 64 bit IEEE floating point
* value. That is non-ANSI, and, moreover, the gcc instruction
* scheduler gets it wrong. We instead use the following macros.
* Unlike the original code, we determine the endianness at compile
* time, not at run time; I don't see much benefit to selecting
* endianness at run time.
*/
/*
* A union which permits us to convert between a double and two 32 bit
* ints.
*/
#if __FLOAT_WORD_ORDER__ == __ORDER_BIG_ENDIAN__
typedef union
{
double value;
struct
{
u_int32_t msw;
u_int32_t lsw;
} parts;
struct
{
u_int64_t w;
} xparts;
} ieee_double_shape_type;
#endif
#if __FLOAT_WORD_ORDER__ == __ORDER_LITTLE_ENDIAN__
typedef union
{
double value;
struct
{
u_int32_t lsw;
u_int32_t msw;
} parts;
struct
{
u_int64_t w;
} xparts;
} ieee_double_shape_type;
#endif
/* Get two 32 bit ints from a double. */
#define EXTRACT_WORDS(ix0,ix1,d) \
do { \
ieee_double_shape_type ew_u; \
ew_u.value = (d); \
(ix0) = ew_u.parts.msw; \
(ix1) = ew_u.parts.lsw; \
} while (0)
/* Get a 64-bit int from a double. */
#define EXTRACT_WORD64(ix,d) \
do { \
ieee_double_shape_type ew_u; \
ew_u.value = (d); \
(ix) = ew_u.xparts.w; \
} while (0)
/* Get the more significant 32 bit int from a double. */
#define GET_HIGH_WORD(i,d) \
do { \
ieee_double_shape_type gh_u; \
gh_u.value = (d); \
(i) = gh_u.parts.msw; \
} while (0)
/* Get the less significant 32 bit int from a double. */
#define GET_LOW_WORD(i,d) \
do { \
ieee_double_shape_type gl_u; \
gl_u.value = (d); \
(i) = gl_u.parts.lsw; \
} while (0)
/* Set a double from two 32 bit ints. */
#define INSERT_WORDS(d,ix0,ix1) \
do { \
ieee_double_shape_type iw_u; \
iw_u.parts.msw = (ix0); \
iw_u.parts.lsw = (ix1); \
(d) = iw_u.value; \
} while (0)
/* Set a double from a 64-bit int. */
#define INSERT_WORD64(d,ix) \
do { \
ieee_double_shape_type iw_u; \
iw_u.xparts.w = (ix); \
(d) = iw_u.value; \
} while (0)
/* Set the more significant 32 bits of a double from an int. */
#define SET_HIGH_WORD(d,v) \
do { \
ieee_double_shape_type sh_u; \
sh_u.value = (d); \
sh_u.parts.msw = (v); \
(d) = sh_u.value; \
} while (0)
/* Set the less significant 32 bits of a double from an int. */
#define SET_LOW_WORD(d,v) \
do { \
ieee_double_shape_type sl_u; \
sl_u.value = (d); \
sl_u.parts.lsw = (v); \
(d) = sl_u.value; \
} while (0)
/*
* A union which permits us to convert between a float and a 32 bit
* int.
*/
typedef union
{
float value;
/* FIXME: Assumes 32 bit int. */
unsigned int word;
} ieee_float_shape_type;
/* Get a 32 bit int from a float. */
#define GET_FLOAT_WORD(i,d) \
do { \
ieee_float_shape_type gf_u; \
gf_u.value = (d); \
(i) = gf_u.word; \
} while (0)
/* Set a float from a 32 bit int. */
#define SET_FLOAT_WORD(d,i) \
do { \
ieee_float_shape_type sf_u; \
sf_u.word = (i); \
(d) = sf_u.value; \
} while (0)
/* Get expsign as a 16 bit int from a long double. */
#define GET_LDBL_EXPSIGN(i,d) \
do { \
union IEEEl2bits ge_u; \
ge_u.e = (d); \
(i) = ge_u.xbits.expsign; \
} while (0)
/* Set expsign of a long double from a 16 bit int. */
#define SET_LDBL_EXPSIGN(d,v) \
do { \
union IEEEl2bits se_u; \
se_u.e = (d); \
se_u.xbits.expsign = (v); \
(d) = se_u.e; \
} while (0)
#ifndef __FreeBSD__
#define STRICT_ASSIGN(type, lval, rval) ((lval) = (rval))
#else
#ifdef FLT_EVAL_METHOD
// Attempt to get strict C99 semantics for assignment with non-C99 compilers.
#if FLT_EVAL_METHOD == 0 || __GNUC__ == 0
#define STRICT_ASSIGN(type, lval, rval) ((lval) = (rval))
#else
#define STRICT_ASSIGN(type, lval, rval) do { \
volatile type __lval; \
\
if (sizeof(type) >= sizeof(long double)) \
(lval) = (rval); \
else { \
__lval = (rval); \
(lval) = __lval; \
} \
} while (0)
#endif
#endif
#endif
/*
* Common routine to process the arguments to nan(), nanf(), and nanl().
*/
void __scan_nan(u_int32_t *__words, int __num_words, const char *__s);
/*
* Mix 1 or 2 NaNs. First add 0 to each arg. This normally just turns
* signaling NaNs into quiet NaNs by setting a quiet bit. We do this
* because we want to never return a signaling NaN, and also because we
* don't want the quiet bit to affect the result. Then mix the converted
* args using addition. The result is typically the arg whose mantissa
* bits (considered as in integer) are largest.
*
* Technical complications: the result in bits might depend on the precision
* and/or on compiler optimizations, especially when different register sets
* are used for different precisions. Try to make the result not depend on
* at least the precision by always doing the main mixing step in long double
* precision. Try to reduce dependencies on optimizations by adding the
* the 0's in different precisions (unless everything is in long double
* precision).
*/
#define nan_mix(x, y) (((x) + 0.0L) + ((y) + 0))
#ifdef __GNUCLIKE_ASM
/* Asm versions of some functions. */
#ifdef __amd64__
static __inline int
irint(double x)
{
int n;
__asm__("cvtsd2si %1,%0" : "=r" (n) : "x" (x));
return (n);
}
#define HAVE_EFFICIENT_IRINT
#endif
#ifdef __i386__
static __inline int
irint(double x)
{
int n;
__asm__("fistl %0" : "=m" (n) : "t" (x));
return (n);
}
#define HAVE_EFFICIENT_IRINT
#endif
#endif /* __GNUCLIKE_ASM */
/*
* ieee style elementary functions
*
* We rename functions here to improve other sources' diffability
* against fdlibm.
*/
#define __ieee754_sqrt sqrt
#define __ieee754_acos acos
#define __ieee754_acosh acosh
#define __ieee754_log log
#define __ieee754_log2 log2
#define __ieee754_atanh atanh
#define __ieee754_asin asin
#define __ieee754_atan2 atan2
#define __ieee754_exp exp
#define __ieee754_cosh cosh
#define __ieee754_fmod fmod
#define __ieee754_pow pow
#define __ieee754_lgamma lgamma
#define __ieee754_lgamma_r lgamma_r
#define __ieee754_log10 log10
#define __ieee754_sinh sinh
#define __ieee754_hypot hypot
#define __ieee754_j0 j0
#define __ieee754_j1 j1
#define __ieee754_y0 y0
#define __ieee754_y1 y1
#define __ieee754_jn jn
#define __ieee754_yn yn
#define __ieee754_remainder remainder
#define __ieee754_sqrtf sqrtf
#define __ieee754_acosf acosf
#define __ieee754_acoshf acoshf
#define __ieee754_logf logf
#define __ieee754_atanhf atanhf
#define __ieee754_asinf asinf
#define __ieee754_atan2f atan2f
#define __ieee754_expf expf
#define __ieee754_coshf coshf
#define __ieee754_fmodf fmodf
#define __ieee754_powf powf
#define __ieee754_lgammaf lgammaf
#define __ieee754_lgammaf_r lgammaf_r
#define __ieee754_log10f log10f
#define __ieee754_log2f log2f
#define __ieee754_sinhf sinhf
#define __ieee754_hypotf hypotf
#define __ieee754_j0f j0f
#define __ieee754_j1f j1f
#define __ieee754_y0f y0f
#define __ieee754_y1f y1f
#define __ieee754_jnf jnf
#define __ieee754_ynf ynf
#define __ieee754_remainderf remainderf
/* fdlibm kernel function */
int __kernel_rem_pio2(double*,double*,int,int,int);
/* double precision kernel functions */
#ifdef INLINE_REM_PIO2
__inline
#endif
int __ieee754_rem_pio2(double,double*);
double __kernel_sin(double,double,int);
double __kernel_cos(double,double);
double __kernel_tan(double,double,int);
double __ldexp_exp(double,int);
double complex __ldexp_cexp(double complex,int);
/* float precision kernel functions */
#ifdef INLINE_REM_PIO2F
__inline
#endif
int __ieee754_rem_pio2f(float,double*);
#ifdef INLINE_KERNEL_SINDF
__inline
#endif
float __kernel_sindf(double);
#ifdef INLINE_KERNEL_COSDF
__inline
#endif
float __kernel_cosdf(double);
#ifdef INLINE_KERNEL_TANDF
__inline
#endif
float __kernel_tandf(double,int);
float __ldexp_expf(float,int);
float complex __ldexp_cexpf(float complex,int);
/* long double precision kernel functions */
long double __kernel_sinl(long double, long double, int);
long double __kernel_cosl(long double, long double);
long double __kernel_tanl(long double, long double, int);
#endif /* !_MATH_PRIVATE_H_ */