@@ -43,7 +43,7 @@ function mul!(C::StridedVecOrMat, A::SparseMatrixCSC, B::Union{StridedVector,Adj
43
43
for k = 1 : size (C, 2 )
44
44
@inbounds for col = 1 : size (A, 2 )
45
45
αxj = B[col,k] * α
46
- for j = getcolptr (A)[col]: (getcolptr (A)[col + 1 ] - 1 )
46
+ for j = colptrs (A)[col]: (colptrs (A)[col + 1 ] - 1 )
47
47
C[rv[j], k] += nzv[j]* αxj
48
48
end
49
49
end
@@ -68,7 +68,7 @@ function mul!(C::StridedVecOrMat, adjA::Adjoint{<:Any,<:SparseMatrixCSC}, B::Uni
68
68
for k = 1 : size (C, 2 )
69
69
@inbounds for col = 1 : size (A, 2 )
70
70
tmp = zero (eltype (C))
71
- for j = getcolptr (A)[col]: (getcolptr (A)[col + 1 ] - 1 )
71
+ for j = colptrs (A)[col]: (colptrs (A)[col + 1 ] - 1 )
72
72
tmp += adjoint (nzv[j])* B[rv[j],k]
73
73
end
74
74
C[col,k] += tmp * α
@@ -94,7 +94,7 @@ function mul!(C::StridedVecOrMat, transA::Transpose{<:Any,<:SparseMatrixCSC}, B:
94
94
for k = 1 : size (C, 2 )
95
95
@inbounds for col = 1 : size (A, 2 )
96
96
tmp = zero (eltype (C))
97
- for j = getcolptr (A)[col]: (getcolptr (A)[col + 1 ] - 1 )
97
+ for j = colptrs (A)[col]: (colptrs (A)[col + 1 ] - 1 )
98
98
tmp += transpose (nzv[j])* B[rv[j],k]
99
99
end
100
100
C[col,k] += tmp * α
@@ -126,7 +126,7 @@ function mul!(C::StridedVecOrMat, X::AdjOrTransStridedMatrix, A::SparseMatrixCSC
126
126
if β != 1
127
127
β != 0 ? rmul! (C, β) : fill! (C, zero (eltype (C)))
128
128
end
129
- @inbounds for multivec_row= 1 : mX, col = 1 : size (A, 2 ), k= getcolptr (A)[col]: (getcolptr (A)[col+ 1 ]- 1 )
129
+ @inbounds for multivec_row= 1 : mX, col = 1 : size (A, 2 ), k= colptrs (A)[col]: (colptrs (A)[col+ 1 ]- 1 )
130
130
C[multivec_row, col] += α * X[multivec_row, rv[k]] * nzv[k] # perhaps suboptimal position of α?
131
131
end
132
132
C
@@ -145,7 +145,7 @@ function mul!(C::StridedVecOrMat, X::AdjOrTransStridedMatrix, adjA::Adjoint{<:An
145
145
if β != 1
146
146
β != 0 ? rmul! (C, β) : fill! (C, zero (eltype (C)))
147
147
end
148
- @inbounds for col = 1 : size (A, 2 ), k= getcolptr (A)[col]: (getcolptr (A)[col+ 1 ]- 1 ), multivec_col= 1 : mX
148
+ @inbounds for col = 1 : size (A, 2 ), k= colptrs (A)[col]: (colptrs (A)[col+ 1 ]- 1 ), multivec_col= 1 : mX
149
149
C[multivec_col, rv[k]] += α * X[multivec_col, col] * adjoint (nzv[k]) # perhaps suboptimal position of α?
150
150
end
151
151
C
@@ -164,7 +164,7 @@ function mul!(C::StridedVecOrMat, X::AdjOrTransStridedMatrix, transA::Transpose{
164
164
if β != 1
165
165
β != 0 ? rmul! (C, β) : fill! (C, zero (eltype (C)))
166
166
end
167
- @inbounds for col = 1 : size (A, 2 ), k= getcolptr (A)[col]: (getcolptr (A)[col+ 1 ]- 1 ), multivec_col= 1 : mX
167
+ @inbounds for col = 1 : size (A, 2 ), k= colptrs (A)[col]: (colptrs (A)[col+ 1 ]- 1 ), multivec_col= 1 : mX
168
168
C[multivec_col, rv[k]] += α * X[multivec_col, col] * transpose (nzv[k]) # perhaps suboptimal position of α?
169
169
end
170
170
C
@@ -296,8 +296,8 @@ function dot(A::SparseMatrixCSC{T1,S1},B::SparseMatrixCSC{T2,S2}) where {T1,T2,S
296
296
size (B) == (m,n) || throw (DimensionMismatch (" matrices must have the same dimensions" ))
297
297
r = dot (zero (T1), zero (T2))
298
298
@inbounds for j = 1 : n
299
- ia = getcolptr (A)[j]; ia_nxt = getcolptr (A)[j+ 1 ]
300
- ib = getcolptr (B)[j]; ib_nxt = getcolptr (B)[j+ 1 ]
299
+ ia = colptrs (A)[j]; ia_nxt = colptrs (A)[j+ 1 ]
300
+ ib = colptrs (B)[j]; ib_nxt = colptrs (B)[j+ 1 ]
301
301
if ia < ia_nxt && ib < ib_nxt
302
302
ra = rowvals (A)[ia]; rb = rowvals (B)[ib]
303
303
while true
@@ -376,7 +376,7 @@ function _lmul!(U::UpperTriangularPlain, B::StridedVecOrMat)
376
376
nrowB, ncolB = size (B, 1 ), size (B, 2 )
377
377
aa = getnzval (A)
378
378
ja = getrowval (A)
379
- ia = getcolptr (A)
379
+ ia = colptrs (A)
380
380
381
381
joff = 0
382
382
for k = 1 : ncolB
@@ -417,7 +417,7 @@ function _lmul!(L::LowerTriangularPlain, B::StridedVecOrMat)
417
417
nrowB, ncolB = size (B, 1 ), size (B, 2 )
418
418
aa = getnzval (A)
419
419
ja = getrowval (A)
420
- ia = getcolptr (A)
420
+ ia = colptrs (A)
421
421
422
422
joff = 0
423
423
for k = 1 : ncolB
@@ -459,7 +459,7 @@ function _lmul!(U::UpperTriangularWrapped, B::StridedVecOrMat)
459
459
nrowB, ncolB = size (B, 1 ), size (B, 2 )
460
460
aa = getnzval (A)
461
461
ja = getrowval (A)
462
- ia = getcolptr (A)
462
+ ia = colptrs (A)
463
463
Z = zero (eltype (A))
464
464
465
465
joff = 0
@@ -499,7 +499,7 @@ function _lmul!(L::LowerTriangularWrapped, B::StridedVecOrMat)
499
499
nrowB, ncolB = size (B, 1 ), size (B, 2 )
500
500
aa = getnzval (A)
501
501
ja = getrowval (A)
502
- ia = getcolptr (A)
502
+ ia = colptrs (A)
503
503
Z = zero (eltype (A))
504
504
505
505
joff = 0
@@ -549,7 +549,7 @@ function _ldiv!(L::LowerTriangularPlain, B::StridedVecOrMat)
549
549
nrowB, ncolB = size (B, 1 ), size (B, 2 )
550
550
aa = getnzval (A)
551
551
ja = getrowval (A)
552
- ia = getcolptr (A)
552
+ ia = colptrs (A)
553
553
554
554
joff = 0
555
555
for k = 1 : ncolB
@@ -591,7 +591,7 @@ function _ldiv!(U::UpperTriangularPlain, B::StridedVecOrMat)
591
591
nrowB, ncolB = size (B, 1 ), size (B, 2 )
592
592
aa = getnzval (A)
593
593
ja = getrowval (A)
594
- ia = getcolptr (A)
594
+ ia = colptrs (A)
595
595
596
596
joff = 0
597
597
for k = 1 : ncolB
@@ -634,7 +634,7 @@ function _ldiv!(L::LowerTriangularWrapped, B::StridedVecOrMat)
634
634
nrowB, ncolB = size (B, 1 ), size (B, 2 )
635
635
aa = getnzval (A)
636
636
ja = getrowval (A)
637
- ia = getcolptr (A)
637
+ ia = colptrs (A)
638
638
639
639
joff = 0
640
640
for k = 1 : ncolB
@@ -680,7 +680,7 @@ function _ldiv!(U::UpperTriangularWrapped, B::StridedVecOrMat)
680
680
nrowB, ncolB = size (B, 1 ), size (B, 2 )
681
681
aa = getnzval (A)
682
682
ja = getrowval (A)
683
- ia = getcolptr (A)
683
+ ia = colptrs (A)
684
684
685
685
joff = 0
686
686
for k = 1 : ncolB
@@ -817,7 +817,7 @@ function ldiv!(D::Diagonal{T}, A::SparseMatrixCSC{T}) where {T}
817
817
for i= 1 : length (b)
818
818
iszero (b[i]) && throw (SingularException (i))
819
819
end
820
- @inbounds for col = 1 : size (A, 2 ), p = getcolptr (A)[col]: (getcolptr (A)[col + 1 ] - 1 )
820
+ @inbounds for col = 1 : size (A, 2 ), p = colptrs (A)[col]: (colptrs (A)[col + 1 ] - 1 )
821
821
nonz[p] = b[Arowval[p]] \ nonz[p]
822
822
end
823
823
A
@@ -837,7 +837,7 @@ function triu(S::SparseMatrixCSC{Tv,Ti}, k::Integer=0) where {Tv,Ti}
837
837
colptr[col] = 1
838
838
end
839
839
for col = max (k+ 1 ,1 ) : n
840
- for c1 = getcolptr (S)[col] : getcolptr (S)[col+ 1 ]- 1
840
+ for c1 = colptrs (S)[col] : colptrs (S)[col+ 1 ]- 1
841
841
rowvals (S)[c1] > col - k && break
842
842
nnz += 1
843
843
end
@@ -847,8 +847,8 @@ function triu(S::SparseMatrixCSC{Tv,Ti}, k::Integer=0) where {Tv,Ti}
847
847
nzval = Vector {Tv} (undef, nnz)
848
848
A = SparseMatrixCSC (m, n, colptr, rowval, nzval)
849
849
for col = max (k+ 1 ,1 ) : n
850
- c1 = getcolptr (S)[col]
851
- for c2 = getcolptr (A)[col] : getcolptr (A)[col+ 1 ]- 1
850
+ c1 = colptrs (S)[col]
851
+ for c2 = colptrs (A)[col] : colptrs (A)[col+ 1 ]- 1
852
852
rowvals (A)[c2] = rowvals (S)[c1]
853
853
nonzeros (A)[c2] = nonzeros (S)[c1]
854
854
c1 += 1
@@ -863,8 +863,8 @@ function tril(S::SparseMatrixCSC{Tv,Ti}, k::Integer=0) where {Tv,Ti}
863
863
nnz = 0
864
864
colptr[1 ] = 1
865
865
for col = 1 : min (n, m+ k)
866
- l1 = getcolptr (S)[col+ 1 ]- 1
867
- for c1 = 0 : (l1 - getcolptr (S)[col])
866
+ l1 = colptrs (S)[col+ 1 ]- 1
867
+ for c1 = 0 : (l1 - colptrs (S)[col])
868
868
rowvals (S)[l1 - c1] < col - k && break
869
869
nnz += 1
870
870
end
@@ -877,9 +877,9 @@ function tril(S::SparseMatrixCSC{Tv,Ti}, k::Integer=0) where {Tv,Ti}
877
877
nzval = Vector {Tv} (undef, nnz)
878
878
A = SparseMatrixCSC (m, n, colptr, rowval, nzval)
879
879
for col = 1 : min (n, m+ k)
880
- c1 = getcolptr (S)[col+ 1 ]- 1
881
- l2 = getcolptr (A)[col+ 1 ]- 1
882
- for c2 = 0 : l2 - getcolptr (A)[col]
880
+ c1 = colptrs (S)[col+ 1 ]- 1
881
+ l2 = colptrs (A)[col+ 1 ]- 1
882
+ for c2 = 0 : l2 - colptrs (A)[col]
883
883
rowvals (A)[l2 - c2] = rowvals (S)[c1]
884
884
nonzeros (A)[l2 - c2] = nonzeros (S)[c1]
885
885
c1 -= 1
@@ -902,7 +902,7 @@ function sparse_diff1(S::SparseMatrixCSC{Tv,Ti}) where {Tv,Ti}
902
902
for col = 1 : n
903
903
last_row = 0
904
904
last_val = 0
905
- for k = getcolptr (S)[col] : getcolptr (S)[col+ 1 ]- 1
905
+ for k = colptrs (S)[col] : colptrs (S)[col+ 1 ]- 1
906
906
row = rowvals (S)[k]
907
907
val = nonzeros (S)[k]
908
908
if row > 1
@@ -939,7 +939,7 @@ function sparse_diff2(a::SparseMatrixCSC{Tv,Ti}) where {Tv,Ti}
939
939
940
940
z = zero (Tv)
941
941
942
- colptr_a = getcolptr (a)
942
+ colptr_a = colptrs (a)
943
943
rowval_a = rowvals (a)
944
944
nzval_a = nonzeros (a)
945
945
@@ -1045,7 +1045,7 @@ function opnorm(A::SparseMatrixCSC, p::Real=2)
1045
1045
nA:: Tsum = 0
1046
1046
for j= 1 : n
1047
1047
colSum:: Tsum = 0
1048
- for i = getcolptr (A)[j]: getcolptr (A)[j+ 1 ]- 1
1048
+ for i = colptrs (A)[j]: colptrs (A)[j+ 1 ]- 1
1049
1049
colSum += abs (nonzeros (A)[i])
1050
1050
end
1051
1051
nA = max (nA, colSum)
@@ -1261,12 +1261,12 @@ function kron(A::SparseMatrixCSC{T1,S1}, B::SparseMatrixCSC{T2,S2}) where {T1,S1
1261
1261
colptrC[1 ] = 1
1262
1262
col = 1
1263
1263
@inbounds for j = 1 : nA
1264
- startA = getcolptr (A)[j]
1265
- stopA = getcolptr (A)[j+ 1 ] - 1
1264
+ startA = colptrs (A)[j]
1265
+ stopA = colptrs (A)[j+ 1 ] - 1
1266
1266
lA = stopA - startA + 1
1267
1267
for i = 1 : nB
1268
- startB = getcolptr (B)[i]
1269
- stopB = getcolptr (B)[i+ 1 ] - 1
1268
+ startB = colptrs (B)[i]
1269
+ stopB = colptrs (B)[i+ 1 ] - 1
1270
1270
lB = stopB - startB + 1
1271
1271
ptr_range = (1 : lB) .+ (colptrC[col]- 1 )
1272
1272
colptrC[col+ 1 ] = colptrC[col] + lA* lB
@@ -1324,9 +1324,9 @@ inv(A::SparseMatrixCSC) = error("The inverse of a sparse matrix can often be den
1324
1324
1325
1325
# Copy colptr and rowval from one sparse matrix to another
1326
1326
function copyinds! (C:: SparseMatrixCSC , A:: SparseMatrixCSC )
1327
- if getcolptr (C) != = getcolptr (A)
1328
- resize! (getcolptr (C), length (getcolptr (A)))
1329
- copyto! (getcolptr (C), getcolptr (A))
1327
+ if colptrs (C) != = colptrs (A)
1328
+ resize! (colptrs (C), length (colptrs (A)))
1329
+ copyto! (colptrs (C), colptrs (A))
1330
1330
end
1331
1331
if rowvals (C) != = rowvals (A)
1332
1332
resize! (rowvals (C), length (rowvals (A)))
@@ -1343,7 +1343,7 @@ function mul!(C::SparseMatrixCSC, A::SparseMatrixCSC, D::Diagonal{T, <:Vector})
1343
1343
Cnzval = nonzeros (C)
1344
1344
Anzval = nonzeros (A)
1345
1345
resize! (Cnzval, length (Anzval))
1346
- for col = 1 : n, p = getcolptr (A)[col]: (getcolptr (A)[col+ 1 ]- 1 )
1346
+ for col = 1 : n, p = colptrs (A)[col]: (colptrs (A)[col+ 1 ]- 1 )
1347
1347
@inbounds Cnzval[p] = Anzval[p] * b[col]
1348
1348
end
1349
1349
C
@@ -1358,7 +1358,7 @@ function mul!(C::SparseMatrixCSC, D::Diagonal{T, <:Vector}, A::SparseMatrixCSC)
1358
1358
Anzval = nonzeros (A)
1359
1359
Arowval = rowvals (A)
1360
1360
resize! (Cnzval, length (Anzval))
1361
- for col = 1 : n, p = getcolptr (A)[col]: (getcolptr (A)[col+ 1 ]- 1 )
1361
+ for col = 1 : n, p = colptrs (A)[col]: (colptrs (A)[col+ 1 ]- 1 )
1362
1362
@inbounds Cnzval[p] = b[Arowval[p]] * Anzval[p]
1363
1363
end
1364
1364
C
@@ -1394,7 +1394,7 @@ function rmul!(A::SparseMatrixCSC, D::Diagonal)
1394
1394
m, n = size (A)
1395
1395
(n == size (D, 1 )) || throw (DimensionMismatch ())
1396
1396
Anzval = nonzeros (A)
1397
- @inbounds for col = 1 : n, p = getcolptr (A)[col]: (getcolptr (A)[col + 1 ] - 1 )
1397
+ @inbounds for col = 1 : n, p = colptrs (A)[col]: (colptrs (A)[col + 1 ] - 1 )
1398
1398
Anzval[p] = Anzval[p] * D. diag[col]
1399
1399
end
1400
1400
return A
@@ -1405,7 +1405,7 @@ function lmul!(D::Diagonal, A::SparseMatrixCSC)
1405
1405
(m == size (D, 2 )) || throw (DimensionMismatch ())
1406
1406
Anzval = nonzeros (A)
1407
1407
Arowval = rowvals (A)
1408
- @inbounds for col = 1 : n, p = getcolptr (A)[col]: (getcolptr (A)[col + 1 ] - 1 )
1408
+ @inbounds for col = 1 : n, p = colptrs (A)[col]: (colptrs (A)[col + 1 ] - 1 )
1409
1409
Anzval[p] = D. diag[Arowval[p]] * Anzval[p]
1410
1410
end
1411
1411
return A
0 commit comments