diff --git a/stdlib/LinearAlgebra/src/symmetric.jl b/stdlib/LinearAlgebra/src/symmetric.jl index 07240fb9afb22..5ac664babff5d 100644 --- a/stdlib/LinearAlgebra/src/symmetric.jl +++ b/stdlib/LinearAlgebra/src/symmetric.jl @@ -12,7 +12,7 @@ struct Symmetric{T,S<:AbstractMatrix{<:T}} <: AbstractMatrix{T} end end """ - Symmetric(A, uplo=:U) + Symmetric(A::AbstractMatrix, uplo::Symbol=:U) Construct a `Symmetric` view of the upper (if `uplo = :U`) or lower (if `uplo = :L`) triangle of the matrix `A`. @@ -63,7 +63,7 @@ function Symmetric(A::AbstractMatrix, uplo::Symbol=:U) end """ - symmetric(A, uplo=:U) + symmetric(A, uplo::Symbol=:U) Construct a symmetric view of `A`. If `A` is a matrix, `uplo` controls whether the upper (if `uplo = :U`) or lower (if `uplo = :L`) triangle of `A` is used to implicitly fill the @@ -105,7 +105,7 @@ struct Hermitian{T,S<:AbstractMatrix{<:T}} <: AbstractMatrix{T} end end """ - Hermitian(A, uplo=:U) + Hermitian(A::AbstractMatrix, uplo::Symbol=:U) Construct a `Hermitian` view of the upper (if `uplo = :U`) or lower (if `uplo = :L`) triangle of the matrix `A`. @@ -153,7 +153,7 @@ function Hermitian(A::AbstractMatrix, uplo::Symbol=:U) end """ - hermitian(A, uplo=:U) + hermitian(A, uplo::Symbol=:U) Construct a hermitian view of `A`. If `A` is a matrix, `uplo` controls whether the upper (if `uplo = :U`) or lower (if `uplo = :L`) triangle of `A` is used to implicitly fill the @@ -844,7 +844,7 @@ function cbrt(A::HermOrSym{<:Real}) end """ - hermitianpart(A, uplo=:U) -> Hermitian + hermitianpart(A::AbstractMatrix, uplo::Symbol=:U) -> Hermitian Return the Hermitian part of the square matrix `A`, defined as `(A + A') / 2`, as a [`Hermitian`](@ref) matrix. For real matrices `A`, this is also known as the symmetric part @@ -860,7 +860,7 @@ See also [`hermitianpart!`](@ref) for the corresponding in-place operation. hermitianpart(A::AbstractMatrix, uplo::Symbol=:U) = Hermitian(_hermitianpart(A), uplo) """ - hermitianpart!(A, uplo=:U) -> Hermitian + hermitianpart!(A::AbstractMatrix, uplo::Symbol=:U) -> Hermitian Overwrite the square matrix `A` in-place with its Hermitian part `(A + A') / 2`, and return [`Hermitian(A, uplo)`](@ref). For real matrices `A`, this is also known as the symmetric