@@ -668,15 +668,15 @@ eigen!(A::RealHermSymComplexHerm{<:BlasReal,<:StridedMatrix}, irange::UnitRange)
668668"""
669669 eigen(A::Union{SymTridiagonal, Hermitian, Symmetric}, irange::UnitRange) -> Eigen
670670
671- Computes the eigenvalue decomposition of `A`, returning an `Eigen` factorization object `F`
671+ Computes the eigenvalue decomposition of `A`, returning an [ `Eigen`](@ref) factorization object `F`
672672which contains the eigenvalues in `F.values` and the eigenvectors in the columns of the
673673matrix `F.vectors`. (The `k`th eigenvector can be obtained from the slice `F.vectors[:, k]`.)
674674
675675Iterating the decomposition produces the components `F.values` and `F.vectors`.
676676
677677The following functions are available for `Eigen` objects: [`inv`](@ref), [`det`](@ref), and [`isposdef`](@ref).
678678
679- The `UnitRange` `irange` specifies indices of the sorted eigenvalues to search for.
679+ The [ `UnitRange`](@ref) `irange` specifies indices of the sorted eigenvalues to search for.
680680
681681!!! note
682682 If `irange` is not `1:n`, where `n` is the dimension of `A`, then the returned factorization
@@ -694,7 +694,7 @@ eigen!(A::RealHermSymComplexHerm{T,<:StridedMatrix}, vl::Real, vh::Real) where {
694694"""
695695 eigen(A::Union{SymTridiagonal, Hermitian, Symmetric}, vl::Real, vu::Real) -> Eigen
696696
697- Computes the eigenvalue decomposition of `A`, returning an `Eigen` factorization object `F`
697+ Computes the eigenvalue decomposition of `A`, returning an [ `Eigen`](@ref) factorization object `F`
698698which contains the eigenvalues in `F.values` and the eigenvectors in the columns of the
699699matrix `F.vectors`. (The `k`th eigenvector can be obtained from the slice `F.vectors[:, k]`.)
700700
@@ -736,9 +736,10 @@ eigvals!(A::RealHermSymComplexHerm{<:BlasReal,<:StridedMatrix}, irange::UnitRang
736736 eigvals(A::Union{SymTridiagonal, Hermitian, Symmetric}, irange::UnitRange) -> values
737737
738738Returns the eigenvalues of `A`. It is possible to calculate only a subset of the
739- eigenvalues by specifying a `UnitRange` `irange` covering indices of the sorted eigenvalues,
739+ eigenvalues by specifying a [ `UnitRange`](@ref) `irange` covering indices of the sorted eigenvalues,
740740e.g. the 2nd to 8th eigenvalues.
741741
742+ # Examples
742743```jldoctest
743744julia> A = SymTridiagonal([1.; 2.; 1.], [2.; 3.])
7447453×3 SymTridiagonal{Float64,Array{Float64,1}}:
@@ -778,6 +779,7 @@ eigvals!(A::RealHermSymComplexHerm{T,<:StridedMatrix}, vl::Real, vh::Real) where
778779Returns the eigenvalues of `A`. It is possible to calculate only a subset of the eigenvalues
779780by specifying a pair `vl` and `vu` for the lower and upper boundaries of the eigenvalues.
780781
782+ # Examples
781783```jldoctest
782784julia> A = SymTridiagonal([1.; 2.; 1.], [2.; 3.])
7837853×3 SymTridiagonal{Float64,Array{Float64,1}}:
0 commit comments